版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 第一章第一章 集合与函数概念集合与函数概念 第二章第二章 基本初等函数基本初等函数 第三章第三章 函数应用函数应用 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离 华罗庚 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 集合集合 基本关系基本关系含义与表示含义与表示基本运算基本运算 列举法列举法 描述法描述法包含包含相等相等并集并集交集交
2、集 补集补集图示法图示法 一、知识结构 一、集合的含义与表示 1、集合:把研究对象称为元素,把一些元素组成的 总体叫做集合 2、元素与集合的关系:或 3、元素的特性:确定性、互异性、无序性确定性、互异性、无序性 RQZNN、常用数集: 4 (一)集合的含义 (二)集合的表示 1、列举法:把集合中的元素一一列举出来,并 放在 内 2、描述法:用文字或公式等描述出元素的特性, 并放在x| 内 3.图示法 Venn图,数轴 二、集合间的基本关系 1、子集:对于两个集合A,B如果集合A中的任何 一个元素都是集合B的元素,我们称A为B的子集. 若集合中元素有n个,则其子集个数为 真子集个数为 非空真子集
3、个数为 2、集合相等:BAABBA, 3、空集:规定空集是任何集合的子集,是任 何非空集合的真子集 2n 2n-1 2n-2 三、集合的并集、交集、全集、补集 |1BxAxxBA或、 |2BxAxxBA且、 |3AxUxxACU且、 全集:某集合含有我们所研究的各个集合的全 部元素,用U表示 AB 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 2 1 1,2,xxx例已知则 0或或2 22 . 2 , Ay yxBx yx AB 例 求 0,), 0,). ABR AB 题型示例 考查集合的含义 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习)
4、2 |60 ,|10 , ,. Ax xxBx mx ABAm 例3 设 且求 的值的集合 ABA ABB BA 转化的思想 2, 3 , 0, 1 , 111 2,3,. 23 11 0, 23 AABABA mB BBA m mm m m 解:由得 当时,符合题意; 当m0时, 1 则;或- m 或或 考查集合之间的关系 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 考查集合的运算 ., ,2, 0,31)2( .,3 , 2 ,3 , 2 , 1 , 0,4 , 3 , 2 , 1 , 014 BABA xxxBxxA BCBCB AI AI 求 或已知 ,求
5、)已知(例 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) U UU 5 U= 1,2,3,4,5 ,AB= 2 ,(C A)B = 4 ,(C A)(C B)= 1,5 ,A. 例设若 求 U AB 1 234 5 3 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 6 | 12, |0, (1), (2), Axx Bx xk ABk ABAk 例已知集合 若求 的取值范围 若求 的取值范围 返回返回 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 1.设设 , , 其中其中 , ,如果如果 ,求实数,求实数a a的取
6、值范围的取值范围 222 40,2(1)1 0Ax xxBx xax a xRABB 扩展提升 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 2. 2.设全集为设全集为R,集合,集合 , (1)求:)求: AB,CR(AB);(数轴法)(数轴法) (2)若集合)若集合 ,满足满足 ,求实数,求实数a的取值范围。的取值范围。 31|xxA 242|xxxB 02|axxC CCB 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 211- ,M 421, ,MxxyyN 2 练习 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习
7、) 函数的复习主要抓住两条主线函数的复习主要抓住两条主线 1、函数的概念及其有关性质。、函数的概念及其有关性质。 2、几种初等函数的具体性质、几种初等函数的具体性质。 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 函数函数 函数的概念函数的概念 函数的基本性质函数的基本性质 函数的单调性函数的单调性 函数的最值函数的最值 函数的奇偶性函数的奇偶性 函数知识结构函数知识结构 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) B C x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 A 函数的三要素:定义域,值域,对应法则函数的三要素
8、:定义域,值域,对应法则 A.BA.B是两个非空的数集是两个非空的数集, ,如果如果 按照某种对应法则按照某种对应法则f f,对于,对于 集合集合A A中的每一个元素中的每一个元素x x,在,在 集合集合B B中都有唯一的元素中都有唯一的元素y y和和 它对应,这样的对应叫做从它对应,这样的对应叫做从 A A到到B B的一个函数。的一个函数。 一、函数的概念:一、函数的概念: 思考:函数 值域与集 合B的关 系 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 二、映射的概念 设A,B是两个非空的集合,如果按照某种确定 的对应关系f,使对于集合A中的任意一个元 素x,在集
9、合B中都有唯一确定的元素y于之对 应,那么就称对应f:AB为集合A到集合B的 一个映射 映射是函数的一种推广,本质是:任一对唯一 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 使函数有意义的使函数有意义的x x的取值范围。的取值范围。 求定义域的主要依据求定义域的主要依据 1 1、分式的分母不为零、分式的分母不为零. . 2 2、偶次方根的被开方数不小于零、偶次方根的被开方数不小于零. . 3 3、零次幂的底数不为零、零次幂的底数不为零. . 4 4、对数函数的真数大于零、对数函数的真数大于零. . 5 5、指、对数函数的底数大于零且不为、指、对数函数的底数大于零且不
10、为1.1. 6、实际问题中函数的定义域、实际问题中函数的定义域 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) (一)函数的定义域(一)函数的定义域 1、具体函数的定义域、具体函数的定义域 2 2 0.5 1 (1)( ) 2 (2)( )log (1) (3)( )log(43) x fx x fxx fxx 例7.求下列函数的定义域 1.【-1,2)(2,+) 2.(-,-1)(1,+) 3.(34,1】 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) ) 12(log)3( ) 2 3 ( 2 2 )2( 1 2 1 ) 1 ( 2 0 x
11、y x x x y x x y 练习:练习: 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 2、抽象函数的定义域、抽象函数的定义域 1)已知函数)已知函数y=f(x)的定义域是的定义域是1,3, 求求f(2x-1)的定义域的定义域 2)已知函数)已知函数y=f(x)的定义域是的定义域是0,5), 求求g(x)=f(x-1)- f(x+1)的定义域的定义域 (2)x| ) yf x 2 的定义域为x4 , 求y=f(x 的定义域 3)3) 1.1,2 ; 2.1,4); 3. - 22, 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 2 8 (
12、 )lg(43)f xaxaxR a 例若的定义域为 求实数 的取值范围。 2 0; 0 . 16120 3 0. 4 aR a R aa Raa 当时,函数的定义域为 , 当时,函数的定义域也为 函数的定义域为 , 的取值范围是 思考:若值域为R呢? 分析:值域为R等价为真数N能取(0,+)每个数。 当a=0时,N=3只是(0,+)上的一个数,不成立; 当a0时,真数N取(0,+)每个数即 0 0a 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 求值域的一些方法:求值域的一些方法: 1、图像法,、图像法,2 、 配方法,配方法,3、分离常数法,、分离常数法, 4、换
13、元法,、换元法,5单调性法。单调性法。 12, 6x 2 2yxx 1) 2) 3) x ey 4) 52 73 x x y ) 3(log3xy ) 2( , 324)( f5 1 xx xx ) 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 三、函数的表示法三、函数的表示法 1、解、解 析析 法法 2、列、列 表表 法法 3、图、图 象象 法法 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) )(3,4)( )( 设)3( )(,2) 1()2( ) 1(, 34)( ) 1 ( 2 2 xfxxff xf xfxxxf xfxxxf 求
14、一次函数,且 求已知 求已知 例例10求下列函数的解析式求下列函数的解析式 待定系数法 换元法 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) (5)已知:对于任意实数x、y, 等式 恒成立, 求 ) 1(2)()(xyxxfyxf )(xf 赋值法赋值法 2 (6) ( ) +g( )2,( )( ) . f xx f xxxxf xg x 已知是偶函数,g是奇函数,且 求、的解析式 构造方程组法构造方程组法 (4) 已知 , 求 的解析式 2 2 1 ) 1 ( x x x xf)0(x ( )f x 配凑法 高中数学必修一函数知识点与典型例题总结(经典)(适合高
15、一或高三复习) 增函数、减函数、单调函数是增函数、减函数、单调函数是 对定义域上的对定义域上的 某个区间而言的。某个区间而言的。 三、函数单调性三、函数单调性 定义:一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量x1、 x2,当x1x2时,都有f(x1) f(x2) ,那么就说函数在区间 上是增函数。区间D叫做函数的增区间。 如果对于定义域I内某个区间D上的任意两个自变量x1、 x2,当x1f(x2) ,那么就说函数在区间 上是减函数。区间D叫做函数的减区间。 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 0,(,0),(0,)
16、0,(,0),(0,) a a 时 单减区间是 时 单增区间是 、函数 的单调区间是 2、函数y=ax+b(a0)的单调区间是 3、函数y=ax2+bx+c (a0)的单调区间是 0,(,) 0,(,) a a 时 单增区间是 时 单减区间是 0,(,) 22 0,(,) 22 bb a aa bb a aa 时 单减区间是单增区间是 时 单增区间是单减区间是 0 a ya x () 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 用定义证明函数单调性的步骤用定义证明函数单调性的步骤: (1) 设元,设设元,设x1,x2是区间上任意两个实数,且是区间上任意两个实数,且x
17、1x2; (2) 作差,作差, f(x1)f(x2) ; (3)变形,通过因式分解转化为易于判断符号的形式变形,通过因式分解转化为易于判断符号的形式 (4)判号,判号, 判断判断 f(x1)f(x2) 的符号;的符号; (5)下结论)下结论. 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 1. 函数函数f (x)= 2x+1, (x1) x, (x1) 则则f (x)的递减区间为的递减区间为( ) A. 1, )B. (, 1) C. (0, ) D. (, 0 B 2、若函数、若函数f(x)=x2+2(a-1)x+2在区间在区间4,+) 上是增函数上是增函数,求实数
18、求实数a的取值范围的取值范围 小试身手?小试身手? .1 1 )(.11)上是增函数,在(证明:函数例 x xxf 3 判断函数判断函数 的单调性。的单调性。 2 xx ee y 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 拓展提升复合函数的单调性 复合函数的定义:设复合函数的定义:设y=f(u)y=f(u)定义定义 域域A A,u=g(x)u=g(x)值域为值域为B B,若,若A BA B, 则则y y关于关于x x函数的函数的y=fg(x)y=fg(x)叫做函叫做函 数数f f与与g g的复合函数,的复合函数,u u叫中间量叫中间量 高中数学必修一函数知识点与典
19、型例题总结(经典)(适合高 一或高三复习) 复合函数的单调性 复合函数的单调性由两个函数共同决定; 引理1:已知函数y=fg(x),若u=g(x)在区间(a,b) 上是增函数,其值域为(c,d),又函数y=f(u)在区间 (c,d)上是增函数,那么,原复合函数y=fg(x)在 区间(a,b)上是增函数。 x增 g(x)增 y增:故可知y随着x的增大而增大 引理2:已知函数y=fg(x),若u=g(x)在区间(a,b) 上是减函数,其值域为(c,d),又函数y=f(u)在区间 (c,d)上是减函数,那么,原复合函数y=fg(x)在 区间(a,b)上是增函数。 x增 g(x)减 y增:故可知y随着
20、x的增大而增大 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 复合函数的单调性 规律:当两个函数的单调性相同时,其复合函数是规律:当两个函数的单调性相同时,其复合函数是增增 函数函数;当两个函数的单调性不相同时,其复合函数是;当两个函数的单调性不相同时,其复合函数是 减函数减函数。 “同增异减同增异减” 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 复合函数的单调性 例题:求下列函数的单调性y=log4(x24x+3) 解 设 y=logy=log4 4u u(外函数)(外函数),u=xu=x2 24x+34x+3(内函数)(内函数). 由
21、u0, u=x24x+3,解得原复合函数的定义域为定义域为 x|xx|x1 1或或x x33. 当x(,1)时,u=x24x+3为减函数,而y=log4u 为增函数,所以(,1)是复合函数的单调减区间; 当x(3,)时,u=x24x+3为增函数y=log4u为增 函数,所以,(3,+)是复合函数的单调增区间. 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 解:设u=x24x+3 ,u=x24x+3=(x2)21, x3或x1,(复合函数定义域) x2 (u减) 解得x1.所以x(,1)时,函数u单调递减. 由于y=log4u在定义域内是增函数,所以由引理知: u=(x
22、2)21的单调性与复合函数的单调性一致,所 以(,1)是复合函数的单调减区间. u=x24x+3=(x2)21, x3或x1,(复合函数定义域) x2 (u增) 解得x3.所以(3,+)是复合函数的单调增区间. 代数解法:代数解法: 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 解: 设 y=logu,u=2xx2.由u0,u=2xx2 解得原复合函数的定义域为0 x2. 由于y=log13u在定义域(0,+)内是减函数,所以, 原复合函数的单调性与二次函数 u=2xx2的单调性 正好相反.易知u=2x-x2=-(x1)2+1在x1时单调增. 由 0 x2 (复合函数
23、定义域) x1,(u增) 解得0 x1,所以(0,1是原复合函数的单调减区间. 又u=(x1)2+1在x1时单调减,由 x2, (复合函数定义域) x1, (u减) 解得0 x2,所以0,1是原复合函数的单调增区间. 例2 求下列复合函数的单调区间: y=log(2xx2) 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 例题:求函数例题:求函数 的单调性。的单调性。 23 2 2 1 )( xx xf 解:设 , f(u)和u(x)的定义域均为R 因为,u在 上递减,在 上 递增。 而 在R上是减函数。 所以, 在 上 是增函数。在 上是减函数。 23 2 xxu u
24、 uf) 2 1 ()( 2 3 , , 2 3 u uf) 2 1 ()( 23 2 2 1 )( xx xf 2 3 , , 2 3 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 例4:求 的单调区间. 12 2 3 . 0 xx y 解: 设 由uR, u=x22x1, 解得原复合函数的定义域为xR. 因为 在定义域R内为减函数,所以由二 次函数u=x22x1的单调性易知,u=x22x 1=(x1)22在x1时单调减,由 xR, (复合函数定义域) x1, (u减) 解得x1.所以(,1是复合函数的单调 增区间.同理1,+)是复合函数的单调减区 间. u y3
25、. 0 u y3 . 0 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 复合函数的单调性小结 复合函数y=fg(x)的单调性可按下列步骤判断: (1) 将复合函数分解成两个简单函数:y=f(u)与u=g(x)。其 中y=f(u)又称为外层函数, u=g(x)称为内层函数; (2) 确定函数的定义域; (3) 分别确定分解成的两个函数的单调性; (4) 若两个函数在对应的区间上的单调性相同(即都是增 函数,或都是减函数),则复合后的函数y=fg(x)为增函数; (5) 若两个函数在对应的区间上的单调性相异(即一个是 增函数,而另一个是减函数),则复合后的函数y=fg(x
26、)为 减函数。 复合函数的单调性可概括为一句话:“同增异减同增异减”。 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 四、函数的奇偶性四、函数的奇偶性 1.奇函数奇函数:对任意的对任意的 ,都有都有Ix )()(xfxf )()(xfxf2.偶函数偶函数:对任意的对任意的 ,都有都有Ix 3.奇函数和偶函数的必要条件奇函数和偶函数的必要条件: 注注:要判断函数的奇偶性要判断函数的奇偶性,首先首先要看其定要看其定 义域区间是否关于原点对称义域区间是否关于原点对称! 定义域关于原点对称定义域关于原点对称. 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复
27、习) 奇奇(偶偶)函数的一些特征函数的一些特征 1.若函数若函数f(x)是奇函数是奇函数,且在且在x=0处有定义处有定义,则则 f(0)=0. 2.奇函数图像关于原点对称奇函数图像关于原点对称,且在对称的区间上且在对称的区间上 不改变不改变单调性单调性. 3.偶函数图像关于偶函数图像关于y轴对称轴对称,且在对称的区间上且在对称的区间上改改 变变单调性单调性 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 例例12 判断下列函数的奇偶性判断下列函数的奇偶性 11) 1 (xxxf 2 3 )2( x xf x xxf 1 )3( 3 , 2,)4( 2 xxxf 高中数学
28、必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 函数的图象函数的图象 1、用学过的图像画图。、用学过的图像画图。 2、用某种函数的图象变形而成。、用某种函数的图象变形而成。 (1)关于)关于x轴、轴、y轴、原点对称关系。轴、原点对称关系。 (2)平移关系。)平移关系。 (3)绝对值关系。)绝对值关系。 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 反比例函数反比例函数 k y x 1、定义域、定义域 . 2、值域、值域 3、图象、图象 k0 k0 a1 0a 0,a1) 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 对数函数
29、yx a a log其中且 a 01 1、定义域、定义域 . 2、值域、值域 R 3、图象、图象 a1 0a0)(a0) 的性质及应用的性质及应用 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) .函数 (a0)的大致图像 x a xxf x y 0 0 a a 2 a 2 a 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 利用所掌握的函数知识,探究函数 (a0)的性质. x a xxf 1. 定义域定义域 2.奇偶性奇偶性 (-,0) (0 ,+) 奇函数奇函数 f(-x)=-f(x) 高中数学必修一函数知识点与典型例题总结(经典)(适合高
30、一或高三复习) x a xxf 21 0,xx上式中为使上式符号确定 1212 2121 21 1212 2121 1212 ,(0,), 0)的单调区间的单调区间 . 当当x (0 ,+)时时,确定某单调区间确定某单调区间 121212 , 0)的单调 区间是 x a xxf 单调区间的分界点为单调区间的分界点为: a的平方根的平方根 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 4.函数 (a0)的大致图像 x a xxf x y 0 0 a a 2 a 2 a 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 5.函数 (a0)的值域 x
31、a xxf , 22,aa 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 1.已知函数 7 f xx x (1).1,2 ,.xfx求的值域 (2).2,4 ,.xfx求的最小值 (3).7, 3 ,.xfx 求的值域 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 2.已知函数 ,求f(x)的最小值,并 求此时的x值. 2 2 5 4 x f x x 2 2 22 2 2 min 4 11 :4 44 4, 15 y2,2240 22 5 , 0 2 x f xx xx tx txx f xx 解原函数化为 1 令 y=t+,(t2) 此函数
32、在 1+递增 t 此时 即时 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 3.建筑一个容积为建筑一个容积为800米米3,深深8米的长方体米的长方体 水池水池(无盖无盖).池壁池壁,池底造价分别为池底造价分别为a元元/米米2 和和2a元元/ 米米2.底面一边长为底面一边长为x米米,总造价为总造价为y. 写出写出y与与x的函数式的函数式,问底面边长问底面边长x为何值时为何值时 总造价总造价y最低最低,是多少是多少? 2 2 :S=100, 100 200 8 (2) x x x 解长方体底面积米 底面另一边长为 池壁总面积为米 高中数学必修一函数知识点与典型例题总结(经
33、典)(适合高 一或高三复习) min 100 t()0,10, , ,t20 y520() :,520. x x a a 函数 在是减函数 在 10 +是增函数 在x=10时 最小值为 元 答 底面一边长为10米时 总造价最低 为元 200 100 2(2) 8 100 20016 () (0) yaxa x aa xx x 总造价 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 函数图象与变换 1平移变换 (1)水平方向的变换: yf(xa)的图象可由yf(x)的图象沿x轴向左平移(a0)或向 右平移(a0)或向 下平移(b1 (2) y=log (x+1) a1 a
34、 yx y xo 1 y xo 1 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 抓住函数中的某抓住函数中的某 些性质,通过局些性质,通过局 部性质或图象的部性质或图象的 局部特征,利用局部特征,利用 常规数学思想方常规数学思想方 法(如类比法、法(如类比法、 赋值法赋值法添、拆项添、拆项 等)。等)。 高考题和平时的高考题和平时的 模拟题中经常出模拟题中经常出 现现 。 抽象性较强;抽象性较强; 综合性强;综合性强; 灵活性强;灵活性强; 难度大。难度大。 没有具体给出函没有具体给出函 数解析式但给出数解析式但给出 某些函数特性或某些函数特性或 相应条件的函数相应条
35、件的函数 抽象函数问题抽象函数问题 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 一、研究函数性质“赋值” 策略 对于抽象函数,根据函数的概念和 性质,通过观察与分析,将变量赋 予特殊值,以简化函数,从而达到 转化为要解决的问题的目的。 【例【例 1】若奇函数若奇函数( )()f xxR,满足,满足(2) 1,(2)( )(2)ff xf xf,则,则(1)f等于(等于( ) A0 B1 C 1 2 D 1 2 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) (1)(1)令令x=,-2,-1,0,1,2,x=,-2,-1,0,1,2,等特殊值求
36、等特殊值求 抽象函数的函数值;抽象函数的函数值; (3)(3)令令y=-x,y=-x,判断抽象函数的奇偶性;判断抽象函数的奇偶性; (4)(4)换换x x为为x+T,x+T,确定抽象函数的周期;确定抽象函数的周期; (2)(2)令令x=xx=x2 2,y=x,y=x1 1或或y= ,y= ,且且x x1 1x0且且 ) y=logax(a0且且 ) 同上同上 1a 1a 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 一、一次一、一次函数模型函数模型:f(x+y)=f(x)+f(y) 解:解: xy令)()()0(,xfxff则 0 yx又令 0)0(f得 fxf x(
37、)( ) 2)1()1(ff故,ff()() 2214 24 12)(,上的值域为:,在xf )()()(yfyxfxf得,由)()()(yfxfyxf 2121, xxxx且任取 )()()()()()( 2121 yfyxfyfyxfxfxf则 )()()( 2121 xxfyxfyxf 21 xx 0 21 xx 0)( 21 xxf则根据题意有 为增函数在函数Rxxf)( 12)(2)1(0)(,在求,xffxf 都有对任意的实数已知函数yxxf,)( 时且当0)()()(xyfxfyxf 例例1:1: 上的值域 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习)
38、解法解法2: 0)( 12 xxf Rxxxx 2121 ,且设 0 12 xx则 , 0)(0 xfx时,由条件知当, )()( 1122 xxxfxf又 的增函数。为Rxxf)( )()()( 1112 xfxfxxf 高中数学必修一函数知识点与典型例题总结(经典)(适合高 一或高三复习) 54)1(32)1()2()12()3(fffff又 )1()22( 2 faaf则 的解集。求不等式 时,当 有对任意已知函数 3)22(, 5)3( 2)(0),(2)()( ,)( 2 aaff xfxyxfyfxf Ryxxf例例2: 解解: 31|3)22( 2 aaaaf的解集为:因此不等式 2)()()(yfyxfxf得,由2)()()(yxfyfxf 2121, xxxx且任取 2)()(2)()()()( 2121 yfyxfyfyxfxfxf则 )()()( 2121 xxfyxfyxf 21 xx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度商务代理合同:出口企业甲与商务代理乙之间的商务代理协议3篇
- 2024年农产品收购条款合同3篇
- 2024年度汽车金融与保险服务合同3篇
- 2024年度幼儿园专职保健医生合作合同版B版
- 2024年度网约车平台与保险公司之间的交通事故责任保险合同2篇
- 2024年度个人保险合同样本3篇
- 2024版技术转让合同:新能源汽车技术转让协议3篇
- 二零二四年度铝合金门窗设计专利申请与授权合同3篇
- 2024年度防水工程环保设施采购合同3篇
- 淘宝直播行业保安工作总结与商铺管理计划
- 胶质瘤综合治疗
- 《冬季施工注意事项》课件
- 刺绣课件教学
- 盐城工学院《数据结构课程设计》2022-2023学年期末试卷
- 山体滑坡防护毛石混凝土挡墙施工方案
- 2024统编版初中八年级语文上册第六单元:大单元整体教学设计
- 2022年北京市公务员录用考试《行测》真题及答案解析
- 顺丰控股财务报表分析报告
- 2024年典型事故案例警示教育手册15例
- 中国传世名画鉴赏智慧树知到期末考试答案2024年
- 20K607 防排烟及暖通防火设计审查与安装
评论
0/150
提交评论