版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020-2021学年第二学期期中测试华东师大版八年级试题一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号字母涂在答题卡相应位置上)1.下列式子中是分式的是( )a. b. c. d. 2.新冠病毒()平均直径约为(纳米).1米=纳米,用科学记数法可以表示为( )a. b. c. d. 3.某种消毒液自年初以来,在库存为的情况下,日销售量与产量持平,自2月底以来,需求量猛增,在生产能力不变的情况下,消毒液一度脱销.下图表示年初至脱销期间,时间与库存量之间函数关系的图象是( )a. b. c. d. 4.化简的结果为( )a. b. c. d.
2、5.如图直线与双曲线相交于两点,则不等式的解集是( )a. 或b. 或c. 或d. 或6.若的值均扩大为原来的3倍,则下列分式的值保持不变的是( )a. b. c. d. 7.函数与在同一坐标系中的图象可能是( )a. b. c. d. 8.根据如图所示的程序计算函数y的值,若输入的x值是1或4时,输出的y值相等,则m的值是()a. 1b. 1c. 2d. 29.如图,弹性小球从p(2,0)出发,沿所示方向运动,每当小球碰到正方形oabc的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为p1,第二次碰到正方形的边时的点为p2,第n次碰到正方形的边时的点为pn,则p2020的
3、坐标是()a. (5,3)b. (3,5)c. (0,2)d. (2,0)10.一条公路旁依次有三个村庄,甲乙两人骑自行车分别从村、村同时出发前往村,甲乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:两村相距10;出发1.25后两人相遇;甲每小时比乙多骑行8;相遇后,乙又骑行了15或65时两人相距2其中正确的个数是()a. 1个b. 2个c. 3个d. 4个二、填空题(每小题3分,共15分,请把答案写在答题卡相应位置上)11.计算:_12.若一个等腰三角形的周长是16,则其底边长与腰长之间的函数关系式是_(要求注明自变量的取值范围).13.化简:_14.如图,过轴正半轴上任意一点作轴的
4、垂线,分别与反比例函数和的图象交于点和点.若点是轴上任意一点,则的面积为_15.如果关于x的方程2无解,则a的值为_三、解答题(共75分)16.解方程:17.化简式子(1),并在2,1,0,1,2中选取一个合适的数作为a的值代入求值18.己知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,.(1)求反比例函数的解析式:(2)若点为轴上一动点,当是等腰三角形时,直接写出点的坐标.19.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成6
5、0万只口罩的生产任务时,甲厂比乙厂少用5天问至少应安排两个工厂工作多少天才能完成任务? 20.如图,已知直线经过点和,分别与x轴、y轴交于a、b两点(1)求直线的解析式:(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有个;(3)作出点关于直线的对称点,则点的坐标为;(4)若在直线和轴上分别存在一点使的周长最短,请在图中标出点(不写作法,保留痕迹).21.春节前小明花1200元从市场购进批发价分别为每箱30元与50元的、两种水果进行销售,分别以每箱35元与60元的价格出售,设购进水果箱,水果箱.(1)求关于的函数表达式;(2)若要求购进水果的数量不少于水果的
6、数量,则应该如何分配购进、水果的数量并全部售出才能获得最大利润,此时最大利润是多少? 22.问题呈现:我们知道反比例函数y(x0)的图象是双曲线,那么函数y+n(k、m、n为常数且k0)的图象还是双曲线吗? 它与反比例函数y(x0)的图象有怎样的关系呢? 让我们一起开启探索之旅探索思考:我们可以借鉴以前研究函数方法,首先探索函数y的图象(1)填写下表,并画出函数y图象列表:x532013y描点并连线(2)观察图象,写出该函数图象两条不同类型的特征: ;理解运用:函数y的图象是由函数y的图象向 平移 个单位,其对称中心的坐标为 灵活应用:根据上述画函数图象的经验,想一想函数y+2的图象大致位置,
7、并根据图象指出,当x满足 时,y323.如图,直线与轴、轴分别交于两点,于点,点为直线上不与点重合的一个动点.(1)求线段的长;(2)当面积是6时,求点的坐标;(3)在轴上是否存在点,使得以、为顶点三角形与全等,若存在,请直接写出所有符合条件的点的坐标,否则,说明理由.答案与解析一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号字母涂在答题卡相应位置上)1.下列式子中是分式的是( )a. b. c. d. 【答案】c【解析】、的分母中不含有字母,属于整式,的分母中含有字母,属于分式故选c2.新冠病毒()平均直径约为(纳米).1米=纳米,用科学记数
8、法可以表示为( )a. b. c. d. 【答案】c【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:100nm=10010-9m=110-7m故选:c【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3.某种消毒液自年初以来,在库存为的情况下,日销售量与产量持平,自2月底以来,需求量猛增,在生产能力不变的情况下,消毒液一度脱销.下图表示年初至脱销期间,时间与库存
9、量之间函数关系的图象是( )a. b. c. d. 【答案】d【解析】【分析】正确理解函数图象与实际问题的关系【详解】解:根据题意:日销售量与生产量持平这时时间t与库存量m之间函数关系的图象为先平,在生产能力不变的情况下,洗手液一度脱销可得直线再逐渐减小,最后为0故选:d【点睛】此题考查函数图象,解题关键在于能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢4.化简的结果为( )a. b. c. d. 【答案】b【解析】【分析】根据分式的运算法则即可求出答案【详解】解:原式故选:b【点睛】本题考查分式的化简,解题的关键是熟练运用分式的运
10、算法则,本题属于基础题型5.如图直线与双曲线相交于两点,则不等式的解集是( )a. 或b. 或c. 或d. 或【答案】b【解析】【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集【详解】观察函数图象,发现:当或时,一次函数图象在反比例函数图象的上方,不等式的解集是或故选:b【点睛】此题考查反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键6.若的值均扩大为原来的3倍,则下列分式的值保持不变的是( )a. b. c. d.
11、【答案】b【解析】【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】a,不符合题意;b,符合题意;c,不符合题意;d,不符合题意;故选:b【点睛】此题考查分式的基本性质,解题的关键是熟练运用分式的基本性质7.函数与在同一坐标系中的图象可能是( )a. b. c. d. 【答案】d【解析】【分析】根据题意,分类讨论k0和k0,两个函数图象所在的象限,即可解答本题【详解】解:当k0时,函数y=-kx+k图象经过第一、二、四象限,函数(k0)的图象在第一、三象限,故选项a、选项c错误,当k0时,函数y=-kx+k的图象经过第一、三、四象限,
12、函数(k0)的图象在第二、四象限,故选项b错误,选项d正确,故选:d【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答8.根据如图所示的程序计算函数y的值,若输入的x值是1或4时,输出的y值相等,则m的值是()a. 1b. 1c. 2d. 2【答案】d【解析】分析】利用所给的函数关系式得到当时,时,所以,从而得到的值【详解】解:当x1时,ym,当x4时,yx+22,根据题意得m2,解得m2,故选:d【点睛】本题考查了函数值:函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值9.如图,弹性小球从p(2,0)出发,沿所示方向运
13、动,每当小球碰到正方形oabc的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为p1,第二次碰到正方形的边时的点为p2,第n次碰到正方形的边时的点为pn,则p2020的坐标是()a. (5,3)b. (3,5)c. (0,2)d. (2,0)【答案】d【解析】【分析】根据轴对称的性质分别写出点p1的坐标为、点p2的坐标、点p3的坐标、点p4的坐标,从中找出规律,根据规律解答【详解】解:由题意得,点p1的坐标为(5,3),点p2的坐标为(3,5),点p3的坐标为(0,2),点p4的坐标为(2,0),点p5的坐标为(5,3),20204505,p2020的坐标为(2,0),故选
14、:d【点睛】本题主要考查了点的坐标、坐标与图形变化对称,正确找出点的坐标的变化规律是解题的关键10.一条公路旁依次有三个村庄,甲乙两人骑自行车分别从村、村同时出发前往村,甲乙之间的距离与骑行时间之间的函数关系如图所示,下列结论:两村相距10;出发1.25后两人相遇;甲每小时比乙多骑行8;相遇后,乙又骑行了15或65时两人相距2其中正确的个数是()a. 1个b. 2个c. 3个d. 4个【答案】d【解析】【分析】根据题意结合一次函数的图像与性质即可一一判断.【详解】解:由图象可知村、村相离10,故正确,当1.25时,甲、乙相距为0,故在此时相遇,故正确,当时,易得一次函数的解析式为,故甲的速度比
15、乙的速度快8故正确当时,函数图象经过点设一次函数的解析式为代入得,解得当时得,解得由同理当时,设函数解析式为将点代入得,解得当时,得,解得由故相遇后,乙又骑行了15或65时两人相距2,正确故选d【点睛】此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与应用.二、填空题(每小题3分,共15分,请把答案写在答题卡相应位置上)11.计算:_【答案】3【解析】【分析】根据零指数幂和负整数指数幂进行计算即可.【详解】原式=1-(-2)=3故答案为3.【点睛】此题考查零指数幂和负整数指数幂,解题关键于掌握运算法则.12.若一个等腰三角形的周长是16,则其底边长与腰长之间的函数关系式是_(要求注明
16、自变量的取值范围).【答案】y=16-2x,4x8【解析】【分析】根据已知列方程,再根据三角形三边的关系确定义域即可【详解】解:2x+y=16,y=16-2x,即x8,两边之和大于第三边,x4,4x8,故答案为:y=16-2x,4x8【点睛】此题考查等腰三角形的性质及三角形三边关系,根据三角形三边关系求得x的取值范围是解题的关键13.化简:_【答案】【解析】【分析】把除法化成乘法,最后约分即可解答.【详解】原式=故答案为:.【点睛】此题考查分式的混合运算,解题关键在于掌握运算法则.14.如图,过轴正半轴上任意一点作轴的垂线,分别与反比例函数和的图象交于点和点.若点是轴上任意一点,则的面积为_【
17、答案】1【解析】【分析】设线段op=x,则可求出ap、bp,再根据三角形的面积公式得出abc的面积=abop,代入数值计算即可【详解】解:设线段op=x,则pb=,ap=,ab=ap-bp=-=,sabc=abop=x=1故答案为:1【点睛】此题考查反比例函数的k的几何意义,三角形的面积公式,解题的关键是表示出线段op、bp、ap的长度,难度一般15.如果关于x的方程2无解,则a的值为_【答案】1或2【解析】【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0【详解】去分母得:ax1=2(x1)ax2x=1,(a2)x=1,当a2=0时,a=2,
18、此时方程无解,满足题意,当a20时,x,将x代入x1=0,解得:a=1,综上所述:a=1或a=2故答案为:1或2【点睛】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型三、解答题(共75分)16.解方程:【答案】原方程无解.【解析】【分析】根据分式方程的解法去分母把方程化成整式方程即可求解.【详解】1,解:,经检验是方程的增根,原方程无解;【点睛】此题主要考查分式方程的求解,解题的关键是进行验根.17.化简式子(1),并在2,1,0,1,2中选取一个合适的数作为a的值代入求值【答案】,1.【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后从-2,-1,0
19、,1,2中选取一个使得原分式有意义的值代入化简后的式子即可解答即可【详解】(1)() ,当a2时,原式1【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法18.己知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,.(1)求反比例函数的解析式:(2)若点为轴上一动点,当是等腰三角形时,直接写出点的坐标.【答案】(1);(2)(0,0)或(10,0)或(13,0)或(,0)【解析】【分析】(1)先求出ob,进而求出ad,得出点a坐标,最后用待定系数法即可得出结论;(2)分三种情况,当ab=pb时,得出pb=5,即可得出结论;当ab=ap时,利用点p与点b关于ad对称,得
20、出dp=bd=4,即可得出结论;当pb=ap时,先表示出ap2=(9-a)2+9,bp2=(5-a)2,进而建立方程求解即可得出结论【详解】解:(1)如图1,过点a作ad上x轴于d,在中将点a坐标代入反比例函数y=中得,.反比例函数的解析式为,(2)由(1)知,ab=5,abp是等腰三角形,当ab=pb时,pb=5,p(0,0)或(10,0),当ab=ap时,如图2,由(1)知,bd=4,易知,点p与点b关于ad对称,dp=bd=4,op=5+4+4=13,p(13,0),当pb=ap时,设p(a,0),a(9,3),b(5,0),ap2=(9-a)2+9,bp2=(5-a)2,(9-a)2+
21、9=(5-a)2a=,p(,0),故满足条件的点p的坐标为(0,0)或(10,0)或(13,0)或(,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键19.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天问至少应安排两个工厂工作多少天才能完成任务? 【答案】至少应安排两个工厂工作10天才能完成任务【解析】【分
22、析】设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩万只,根据工作时间工作总量工作效率结合在独立完成60万只口罩的生产任务时甲厂比乙厂少用5天,即可得出关于x的分式方程,解之经检验即可得出x的值,再利用两厂工作的时间总生产任务的数量两厂日生产量之和,即可求出结论【详解】解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:,解得:x4,经检验,x4是原方程的解,且符合题意,1.5x6,100(4+6)10(天)答:至少应安排两个工厂工作10天才能完成任务【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键20.如图,已知直线经过点和,分别与x轴、
23、y轴交于a、b两点(1)求直线的解析式:(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有个;(3)作出点关于直线的对称点,则点的坐标为;(4)若在直线和轴上分别存在一点使的周长最短,请在图中标出点(不写作法,保留痕迹).【答案】(1);(2)10;(3)作图见解析,d(6,2);(4)作图见解析【解析】【分析】(1)先利用待定系数法求得直线ab的解析式为;(2)分别把x=2、3、4、5代入,求出对应的纵坐标,从而得到图中阴影部分(不包括边界)所含格点的坐标;(3)首先作出点c关于直线ab的对称点d,根据直线ab的解析式可知oab是等腰直角三角形,然后根据轴
24、对称的性质即可求出点d的坐标;(4)作出点c关于直线y轴的对称点e,连接de交ab于点m,交y轴于点n,则此时cmn的周长最短【详解】(1)设直线ab的解析式为,把(1,5),(4,2)代入得,解得,直线ab的解析式为;(2)当x=2,y=4;当x=3,y=3;当x=4,y=2;当x=5,y=1图中阴影部分(不包括边界)所含格点的有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)一共10个;故答案为:10;(3)如图,点d就是所求作的点;直线与轴、y轴交于a、b两点,令,则;令,则;a点坐标为(6,0),b点坐标为(0,6
25、),oa=ob=6,oab=45点c关于直线ab的对称点为d,点c(4,0),ad=ac=2,abcd,dab=cab=45,dac=90,点d的坐标为(6,2);(4)如图,点m、n就是所求的点;作出点c关于直线y轴的对称点e,连接de交ab于点m,交y轴于点n,则nc=ne,点e(-4,0)又点c关于直线ab的对称点为d,cm=dm,cmn的周长=cm+mn+nc=dm+mn+ne=de,此时周长最短【点睛】本题考查了待定系数法求一次函数的解析式,横纵坐标都为整数的点的坐标的确定方法,轴对称的性质及轴对称-最短路线问题,综合性较强,有一定难度21.春节前小明花1200元从市场购进批发价分别
26、为每箱30元与50元的、两种水果进行销售,分别以每箱35元与60元的价格出售,设购进水果箱,水果箱.(1)求关于的函数表达式;(2)若要求购进水果的数量不少于水果的数量,则应该如何分配购进、水果的数量并全部售出才能获得最大利润,此时最大利润是多少? 【答案】(1);(2)应购进水果15箱、水果15箱能够获得最大利润,最大利润为225元【解析】【分析】(1)根据a水果总价+b水果总价=1200列出关于x、y的二元一次方程,对方程进行整理变形即可得出结论;(2)设利润为w元,找出利润w关于x的函数关系式,由购进a水果的数量不得少于b水果的数量找出关于x的一元一次不等式,解不等式得出x的取值范围,再
27、利用一次函数的性质即可解决最值问题.【详解】(1)关于的函数表达式为:.(2)设获得的利润为元,根据题意得,水果的数量不得少于水果的数量,解得.,随的增大而减小,当时,最大,此时.即应购进水果15箱、水果15箱能够获得最大利润,最大利润为225元.【点睛】本题考查了二元一次方程的应用、一次函数的应用;根据题意得出等量关系列出方程组或得出函数关系式或由不等关系得出不等式是解决问题的关键22.问题呈现:我们知道反比例函数y(x0)图象是双曲线,那么函数y+n(k、m、n为常数且k0)的图象还是双曲线吗? 它与反比例函数y(x0)的图象有怎样的关系呢? 让我们一起开启探索之旅探索思考:我们可以借鉴以
28、前研究函数的方法,首先探索函数y的图象(1)填写下表,并画出函数y的图象列表:x532013y描点并连线(2)观察图象,写出该函数图象的两条不同类型的特征: ;理解运用:函数y的图象是由函数y的图象向 平移 个单位,其对称中心的坐标为 灵活应用:根据上述画函数图象的经验,想一想函数y+2的图象大致位置,并根据图象指出,当x满足 时,y3【答案】(1)详见解析;详见解析;(2)图象是中心对称图形;当时,y随着x的增大而减小;理解运用:左;1;灵活应用:【解析】【分析】(1)将x=-5,-3,-2,0,1,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性解答该函数图象的两条不同类型的特征;理解运用:结合图象即可得出结论灵活应用:结合图象可准确填空【详解】(1)列表:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024餐饮业室内装修服务协议
- 幼儿课件特点教学课件
- 济南版2018-2019学年七年级生物下册全一册检测
- 初中篮球教案知识讲解
- 排球专项课教案
- 企业房地产项目贷款合同范本
- 代理合同范本x
- 二手物流设备转让协议
- IT行业劳动合同办公地点
- 个体诊所药品管理法规遵守
- 2024至2030年中国保安服务行业市场发展现状及前景趋势与投资战略研究报告
- 小红书种草营销师认证考试题附有答案
- 安全生产法律法规清单(2024年5月版)
- 包装饮用水生产风险清单范例
- 2024-2030年中国光探测器行业发展规划及应用前景预测报告
- 当代社会政策分析 课件 第二章 就业社会政策
- DL-T5333-2021水电水利工程爆破安全监测规程
- 教研组听课记录
- 信息技术知识点
- 人教版(一年级起点)一年级至六年级的英语词汇
- 消防培训四懂四会
评论
0/150
提交评论