初等几何变换=中学几何变换_第1页
初等几何变换=中学几何变换_第2页
初等几何变换=中学几何变换_第3页
初等几何变换=中学几何变换_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初等几何变换百科名片初等几何变换,是一个将几何图形按照某种法则或规律变成另一种几何图形的过程。它对于几何学的研究有重要作用。初等几何变换主要包括全等变换,相似变换,反演变换。目录概念解释 全等变换 1. 总括 2. 平移变换 3. 旋转变换 4. 反射变换相似变换 1. 总括 2. 位似变换反演变换 1. 总括 2. 作已知点的反演点的方法概念解释 全等变换 1. 总括 2. 平移变换 3. 旋转变换 4. 反射变换相似变换 1. 总括 2. 位似变换反演变换 1. 总括 2. 作已知点的反演点的方法展开编辑本段概念解释如果某种几何变换的全体组成一个“群”,就有相应的几何学,而讨论在某种几何变

2、换群下图形保持不变的性质与不变量,就是相应几何学的主要内容(见埃尔朗根纲领)。例如,研究图形在全等变换群下的不变性与不变量,就是欧几里得几何学的主要内容。几何变换为用近代数学方法讨论初等几何提供了广阔的前景。几何变换还在绘图、力学、机械结构的设计、航空摄影测量、电路网络等方面有广泛的应用。 编辑本段全等变换总括如果从平面(空间)到其自身的映射,对于任意两点a、b和它们的像a,b总有ab=ab。则这个映射叫做平面(空间)的全等变换,或叫做合同变换。显然,在全等变换下两点之间的距离是不变量。由全等变换得到的图形与原图形相等。 在平面内存在两种全等变换,第一种叫做正常全等变换(真正全等变换),它把一

3、个图形变成与它正常全等的图形,所谓正常全等图形是指两个全等图形上每两个对应三角形有同一方向(顺时针或逆时针方向),并且每两个对应的有向角有同一方向(图l之a)。第二种叫做反常全等变换(镜像全等变换),它把一个图形变成与它反常全等的图形,即对于两个全等的图形上每两个对应三角形有相反的方向,并且每两个对应的有向角有相反的方向.类似地,空间也有正常全等变换和反常全等变换。 全等变换存在逆变换、恒等变换。接连施行两次全等变换的积仍是全等变换,所以全等变换的全体组成群,叫做全等变换群,也叫做刚体变换群或运动群。平移、旋转、反射都是特殊的全等变换。 平移变换如果在平面内任意一点p变到 p时,使得有给定的方

4、向,并且线段pp有给定的长度,这种平面到其自身的映射叫做平移变换。显然,平移变换下连接各对应点的线段互相平行且相等,各对应线段互相平行且相等。平移变换把一个图形变为与它正常全等的图形. 旋转变换如果平面到其自身的一个映射,使得定点o保持不动,并且,对于任一点p 映射到p点,有op=op,pop=(0180),且从射线 op到op的方向与给定方向相同,这个映射叫做绕中心o,按已知方向旋转的旋转变换。o点叫做旋转中心,叫做旋转角. 旋转变换下各对应直线所成的角不变,都等于其旋转角。一个图形经过旋转变换,得到与它正常全等的图形。 旋转角为180的旋转变换叫做中心反射.图形f和f是关于o点中心反射,o

5、点叫做反射中心,此时,图形f和f正常全等。 如果在某个中心反射下,一个图形的像与它自身重合,那么这个图形叫做中心对称图形或中心反射图形。如平行四边形是关于对角线中点对称的中心对称图形,圆,椭圆都是中心对称图形。 空间旋转变换有绕轴的旋转,它是空间到其自身的映射,且满足下述条件:点p的像p与p同在与给定轴线s垂直的平面m内,点p和p到轴线s的距离相等,即pp0=pp0。p0是平面m与轴线s的交点,pp0p为定角. 这个映射叫做绕轴s旋转定角的空间旋转变换。由pp0到pp0的旋转方向规定为:如果0就表示用右手握拳,拇指指向轴上正方向;如果0),把这个映射叫做平面(空间)的相似变换。当k=1时,相似

6、变换就是全等变换。 平面内有两种相似变换,第一种叫做真正相似变换(正相似变换),第二种叫做镜像相似变换(负相似变换)。真正相似变换把一个图形变换成与它真正相似(正相似)的图形,即使得两个相似图形的每对对应三角形有同一的方向,每对对应角有同一方向. 镜像相似变换把一个图形变换成与它镜像相似的(负相似)图形。即使得两个相似图形的每对对应三角形有相反的方向,每对对应角有相反的方向. 类似地,空间真正相似变换,把一个空间图形变换成与它真正相似的图形,即使得两个空间相似图形的每两个对应四面体同向,对应三面角也同向。镜像相似变换,把一个空间图形变换成与它镜像相似的图形,即使得两个空间相似图形的对应四面体反

7、向,对应三面角也反向。 相似变换保持两直线所成角的大小不变,并且不改变图形的形状而改变其大小,两个相似的平面图形,其面积之比等于它们的相似比的平方;两个相似的空间图形,其体积之比等于它们的相似比的立方。 平面(空间)的全体相似变换组成一个群,称为相似变换群。 相似变换的特殊情形是位似变换。 位似变换对于平面到其自身的一个映射,如果存在定点s及常数k(k0)。使得对于任意点m及其像m,满足:s,m,m三点共线;sm=ksm,则这种映射称为以s为位似中心,k为位似比的位似变换。当k0时,对应的两点在位似中心的同侧,称为顺位似,s称为外位似中心;当k1。原图形被放大;当丨k丨1,原图形被缩小。特别地

8、,当k=-1的位似变换,可看作是以s为中心,旋转角为180的旋转变换。 在位似变换下,任何一条直线变为与它平行的直线,直线ab经位似变换得到ab,则abab。 任意两个不等的圆,都可看作是位似图形,两圆心是对应点。圆o的半径为r,圆o的半径为r。s 和s分别以定比r/r外、内分线段oo。圆o 和圆o分别关于s 和s位似,它们的位似比为r/r。 类似地,任意两个不等的球也可以看作是位似图形,并且有两种方法使它们位似。 编辑本段反演变换总括在平面内设有一半径为r,中心为o的圆,对任一异于o点的p点,将其变换成该射线op上一点p,且使opop=r,这个变换叫做平面反演变换。圆o叫做反演基圆,圆心o

9、叫做反演中心或反演极,r 叫做反演半径或反演幂. 从定义可知,反演变换将过反演中心的射线变成自身,且在此射线上建立对合对应,它使位于圆内的点变成圆外的点,位于圆外的点变成圆内的点,反演中心变成平面内的无限远点。而反演圆上的点则保持不变。 空间反演变换可以看作是平面反演变换绕反演基圆的直径旋转而得。反演变换下,将不过反演中心的直线或平面,分别变成过反演中心的圆或球面;将不过反演中心的圆或球面,分别变成另一个不过反演中心的圆或球面。反之也成立。 反演变换是反向保角的,即使两线(或两面)所成的角度的大小保持不变,但方向相反。 作已知点的反演点的方法给出反演极o和反演幂k0,作点a的反演点a。 令k=r2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论