版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、整式的乘除知识点及练习整式的乘除知识点及练习 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(整式的乘除知识点及练习)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为整式的乘除知识点及练习的全部内容。- 11 -整式的乘除考点1、幂的有关运算 (m、n都是正整数) (m、n都是正整数) (n是正整数) (a0,m、n都是正整
2、数,且mn) (a0) (a0,p是正整数)例:在下列运算中,计算正确的是()(a)(b) (c)(d) 练习:1、_。 2、 = 。 3、 = 。 4、 = 。 5、下列运算中正确的是( )a;b;c; d6、计算的结果是( )a、 b、 c、 d、7、下列计算中,正确的有( ) 。a、 b、 c、 d、8、在 中结果为的有( )a、 b、 c、 d、提高点1:巧妙变化幂的底数、指数例:已知:,求的值;1、 已知,,求的值。2、 已知,,求的值.3、 若,则_.4、 若,则=_.5、 若,则_。6、 已知,,求的值.7、 已知,,则_考点2、整式的乘法运算例:计算: = 练习:1、若,求、的
3、值。2、已知,则的值为( )。a b c d3、代数式的值( )。a只与有关 b只与有关 c与都无关 d与都有关4、计算:的结果是_.考点3、乘法公式平方差公式: 完全平方公式: , 例:计算:例:已知:,化简的结果是练习:1、(a+b1)(ab+1)= 。2下列多项式的乘法中,可以用平方差公式计算的是( ) a(a+b)(b+a) b(a+b)(ab) c(a+b)(ba) d(a2b)(b2+a)3下列计算中,错误的有( )(3a+4)(3a4)=9a24; (2a2b)(2a2+b)=4a2b2;(3x)(x+3)=x29; (x+y)(x+y)=(xy)(x+y)=x2y2a1个 b2
4、个 c3个 d4个4若x2y2=30,且xy=5,则x+y的值是( )a5 b6 c6 d55、已知 求与的值.6、试说明不论x,y取何值,代数式的值总是正数。7、若 ,则括号内应填入的代数式为( )。a b c d8、(a2b+3c)2(a+2b3c)2= 。9、若的值使得成立,则的值为( )a5 b4 c3 d210、已知,都是有理数,求的值.经典题目:11、已知,求 m,n 的值。12、,求(1)(2)13、一个整式的完全平方等于(为单项式),请你至少写出四个所代表的单项式。考点4、利用整式运算求代数式的值例:先化简,再求值:,其中1、,其中,。2、若,求、的值。3、当代数式的值为7时,
5、求代数式的值.4、已知,,求:代数式的值。5、已知时,代数式,求当时,代数式 的值。6、先化简再求值,当时,求此代数式的值。7、化简求值:(1)(2x-y)(2x-y)(y-2x),其中(x2)2+y+1=0.考点5、整式的除法运算例:已知多项式含有同式,求的值。练习:1、若为正整数,则( )a、 b、0 c、 d、2、已知,则、的取值为( )a、 b、 c、 d、3、已知多项式能被整除,且商式是,则的值为( )a、 b、 c、 d、不能确定4、 5、6、已知一个多项式与单项式的积为求这个多项式.7、已知一个多项式除以多项式所得的商式是,余式是,求这个多项式.8、 已知一个多项式与单项式的积为
6、,求这个多项式。经典题目:8、已知多项式能够被整除。的值.求的值。若均为整数,且,试确定的大小。考点6、定义新运算例8:在实数范围内定义运算“”,其法则为:,求方程(43)的解练习:1、对于任意的两个实数对和,规定:当时,有;运算“”为:;运算“为:设、都是实数,若,则2、现规定一种运算:,其中为实数,则等于( )a b c d课后作业1、 (1) (2)(3) (4)(运用乘法公式)2、先化简,再求值:,其中.3、小马虎在进行两个多项式的乘法时,不小心把乘以,错抄成除以,结果得,则第一个多项式是多少?4、梯形的上底长为厘米,下底长为厘米,它的高为厘米,求此梯形面积的代数式,并计算当,时的面积。5、如果关于的多项式的值与无关,你能确定的值吗?并求的值。6、已知,(1)你能根据此推测出的个位数字是多少?(2)根据上面的结论,结合计算,试说明 的个位数字是多少?7、阅读下文,寻找规律:已知,观察下列各式:,(1)填空: 。(2)观察上式,并猜想:_。_。(3)根据你的猜想,计算:_.8、我国宋朝数学家扬辉在他的著作详解九章算法中提出表1,此表揭示了(n为非负数)展开式的各项系数的规律。 例如:它只有一项,系数为1;它有两项,系数分别为1,1;它有三项,系数分别为1,2,1;它有四项,系数分别为1,3,3,1;根据以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融安全与诚信教育
- 石河子大学《中药鉴定学实验一》2021-2022学年第一学期期末试卷
- 石河子大学《药物分析》2022-2023学年第一学期期末试卷
- 食品安全十三五规划
- 石河子大学《计算机组织与结构》2022-2023学年期末试卷
- 石河子大学《儿科学与儿童保健学见习》2021-2022学年第一学期期末试卷
- 沈阳理工大学《三维工程软件》2023-2024学年第一学期期末试卷
- 沈阳理工大学《建筑结构》2022-2023学年第一学期期末试卷
- 2018年四川内江中考满分作文《我心中的英雄》
- 沈阳理工大学《含能材料》2021-2022学年第一学期期末试卷
- 小班语言《两片树叶》课件
- 头疗专业知识和话术课件
- 毛泽东诗词鉴赏
- 大学生职业生涯规划书护理
- 国际传播与跨文化传播研究综述
- 大学生到教师的角色转变课件
- 挂网喷射混凝土基坑开挖支护专项施工方案
- 高三化学试卷讲评课件
- 半导体DIF是什么工艺
- 生涯发展报告 (第二版)
- 财务管理大学生的职业生涯规划
评论
0/150
提交评论