版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、摘要甲型H1N1流感为急性呼吸道传染病,其病原体是一种新型的甲型H1N1流感病毒,在人群中传播。与以往或目前的季节性流感病毒不同,该病毒毒株包含有猪流感、禽流感和人流感三种流感病毒的基因片段。人群对甲型H1N1流感病毒普遍易感,并可以人传染人,但是要提醒大家的是甲型H1N1流感是可防、可控的。只要积极作好预防,也是比较安全的。目前预防甲型H1N1流感 的疫苗已投入使用。本论文通过建立甲流传染模型,分析被传人数多少与哪些因素有关,如何预报传染病高潮的到来,如何处理潜伏期等等问题。甲型H1N1流感问题的研究一模型假设.在甲流传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。总人口
2、数N(t)不变,人口始终保持一个常数N。人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t时刻已被感染成为病人而且具有传染力的人数占总人数的比例;潜伏期者(incubation),其数量比例为q(t),表示在t时刻,染病但未被发现、可感染、不可治愈,在潜伏期之后变为感染病者;恢复者(Recovered),其数量比例记为r(t),表示t时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传
3、染系统。)占总人数的比例。.病人的日接触率(每个病人每天有效接触的平均人数)为常数,感染者的日接触率(每个感染者每天有效接触的平均人数)为,日治愈率(每天被治愈的病人占总病人数的比例)为常数,显然平均传染期为1,传染期接触数为=。二模型构成在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:在假设1中显然有:s(t) + i(t) + r(t)+q(t) = 1对于病愈免疫的移出者的数量应为(1)不妨设初始时刻的易感染者,染病者,恢复者的比例分别SIR基础模型用微分方程组表示如下: (2) 上述(2)方程无法求出s(t) , i(t)的解析解,我们先做数值计算。三数值计算在方程(
4、2)中设=2,=0.4,i(0)= 0.01,s(0)=0.99,用MATLAB软件编程:function y=ill(t,x)a=0.91;b=0.4;c=1.1;d=1;y=d*x(3)*x(2)-b*x(1),-a*x(1)*x(2)-c*x(2)*x(3),(a-d)*(x(2)*x(1)+x(3)*x(2);ts=0:50;x0=0.02,0.98,0.18;t,x=ode45(ill,ts,x0); t,x;plot(t,x(:,1),r,t,x(:,2),g,t,x(:,3),b);legend(病人,康复者,潜伏期者);pauseplot(x(:,2)+x(:,3),x(:,1
5、);title(病人,潜伏期感染者与康复者相轨线);,四相频线分析我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。D = (s,i)| s0,i0 , s + i 1在方程(2)中消去并注意到的定义,可得 (3)所以: (4)利用积分特性容易求出方程(3)的解为: (5)在定义域D内,(4)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随着时间t的增加s(t)和i(t)的变化趋向下面根据(1),(5)式和上图分析s(t),i(t)和r(t)的变化情况(t时它们的极限值分别记作(, 和).1. 不论初始条件s0,i0如何,病人消失将消失,即:2.最终未被感染的健康
6、者的比例是 ,在(5)式中令i=0得到, 是方程在(0,1/)内的根.在图形上 是相轨线与s轴在(0,1/)内交点的横坐标3.若1/,则开始有,i(t)先增加, 令=0,可得当s=1/时,i(t)达到最大值:然后s1/(即1/s0)时传染病就会蔓延.而减小传染期接触数,即提高阈值1/使得1/(即 1/),传染病就不会蔓延(健康者比例的初始值是一定的,通常可认为接近1)。并且,即使1/,从(19),(20)式可以看出, 减小时, 增加(通过作图分析), 降低,也控制了蔓延的程度.我们注意到在=中,人们的卫生水平越高,日接触率越小;医疗水平越高,日治愈率越大,于是越小,所以提高卫生水平和医疗水平有
7、助于控制传染病的蔓延.从另一方面看, 是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被个健康者交换.所以当 即时必有 .既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。五群体免疫和预防根据对SIR模型的分析,当 时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/变大以外,另一个途径是降低 ,这可以通过比如预防接种使群体免疫的办法做到.忽略病人比例的初始值有,于是传染病不会蔓延的条件 可以表为这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)满足上式,就可以制止传染病的蔓延。这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实
8、际上这是很难做到的。据估计当时印度等国天花传染病的接触数 =5,由上式至少要有80%的人接受免疫才行。世界卫生组织总干事陈冯富珍2010年8月10号宣布,甲型H1N1流感的大流行期已经结束,但世卫呼吁各国继续监察新型流感,防范病毒变种。 陈冯富珍听取世卫紧急委员会专家的意见后,宣布解除新流感的最高警戒。但她预期,未来几年新型流感会好像季节性流感一样继续流行,流感病毒也会对部分国家和地区存在隐患。即使花费大量资金提高 ,也因很难做到免疫者的均匀分布,使得甲流H1N1才在全世界根除。而如果新流感的更高,根除就更加困难。六模型验证新型流感2009年4月开始在墨西哥爆发,之后陆续在美国等地蔓延,五月香
9、港确诊首起新型流感个案,为亚洲首宗确诊病例。六月世卫将流感大流行警戒级别,调升至第六级别,世界各地因此储存新流感疫苗,以防万一。不过随着疫情减轻,本年初多个国家及地区,开始销毁疫苗,以及取消为民众接种疫苗。而新型流感爆发以来,在全球造成18449人死亡。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了的实际数据,世卫组织用这组数据对SIR模型作了验证。首先,由方程(1),(2)可以得到 ,两边积分得 所以: (6)再 (7)当 时,取(7)式右端Taylor展开式的前3项得:在初始值=0 下解高阶常微分方程得:其中, 从而容易由(7)式得出:然后取定参数 s0, 等,画出(7)式
10、的图形,如图4中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。七被传染比例的估计在一次传染病的传播过程中,被传染人数的比例是健康者人数比例的初始值与之差,记作x,即 (8)当i0很小,s0接近于1时,由(8)式可得 (9)取对数函数Taylor展开的前两项有 (10)记 , 可视为该地区人口比例超过阈值的部分。当 时(10)式给出 (11)这个结果表明,被传染人数比例约为的2倍。对一种传染病,当该地区的卫生和医疗水平不变,即不变时,这个比例就不会改变。而当阈值提高时,减小,于是这个比例就会降低。八模型评价1,本模型根据甲流实际传染情况建设了数学模型,并考虑了其中的潜伏期、日治愈率、日接触率等因素,对于如何控制流感爆发具有一定的科学借鉴价值;2,所选取的数值虽然参考了卫生部信息通告,但由于取样的数据量太小,没有大量采集相关的数据,可能导致运算结果有所偏差;3,本篇论文还有很多值得改进的地方,如如何利用数学建模推迟传染病高潮的爆发期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国消防通风低噪声柜式离心风机行业投资前景及策略咨询研究报告
- 2024至2030年中国防盗器五金配件行业投资前景及策略咨询研究报告
- 2024年磷化镓晶体(GAP)项目成效分析报告
- 2024至2030年中国蜂房式线绕过滤芯行业投资前景及策略咨询研究报告
- 2024至2030年中国艳古铜色电解着色剂行业投资前景及策略咨询研究报告
- 2024至2030年中国精氨酸数据监测研究报告
- 企业三级安全教育培训
- 2024至2030年中国焦性没食子酸数据监测研究报告
- 2024至2030年中国方型针阀滴量器数据监测研究报告
- 2024至2030年中国对焊式管座数据监测研究报告
- 人工智能智能制造设备维护与管理手册
- 2024年大学生就业创业知识竞赛题库及答案(共350题)
- 基于SICAS模型的区域农产品品牌直播营销策略研究
- 《算法设计与分析基础》(Python语言描述) 课件 第6章分支限界法
- 2024年福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题库(含答案)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 田径训练论文开题报告
- 个人健康管理平台使用操作教程
- 新版《铁道概论》考试复习试题库(含答案)
- DB11T 2315-2024消防安全标识及管理规范
- 商业银行开展非法集资风险排查活动情况报告
评论
0/150
提交评论