版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学 第四章 数系的扩充与复数的引入 4.1.1 数的概念的扩展知识导航 北师大版选修1-2高中数学 第四章 数系的扩充与复数的引入 4.1.1 数的概念的扩展知识导航 北师大版选修1-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学 第四章 数系的扩充与复数的引入 4.1.1 数的概念的扩展知识导航 北师大版选修1-2)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对
2、您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为高中数学 第四章 数系的扩充与复数的引入 4.1.1 数的概念的扩展知识导航 北师大版选修1-2的全部内容。71.1数的概念的扩展自主整理1.把平方等于-1的数用符号i表示,规定i2=1,把i叫作_.2。形如a+bi的数叫作_(a、b是实数, i是虚数单位).记作z=a+bi(a、br)。3。对于复数z=a+bi,a与b分别叫作复数z的_与_,并且分别用_与_表示,即a=_,b=_。4。复数的全体组成的集合叫作_,记作_,显然,_.5.z=a+bi中,当_时,z为实数;当b0时,z为虚数;当a=0,b0时,z为纯虚数。高手笔记1.数
3、集之间的包含关系:nzqrc.可用图示表示:2.复数的分类:复数a+bi3.复数a+bi=0的充要条件为a=b=0.4.复数z=a+bi(a、br)的实部、虚部分别是a、b,而虚部不是bi名师解惑 如何判断含有参变量的复数是实数,虚数,纯虚数? 剖析:对于复数z=a+bi何时为实数,虚数,纯虚数?应按定义来加以判断。首先,应看a、b取值是ar,br,还是ac,bc。若ar、br,则a为实部,b为虚部;若ac,bc,则还应进一步进行运算求得z的实部、虚部。其次注意纯虚数应满足两条,即实部为0,虚部不为0。特别是虚部不为0,易漏掉而出错.讲练互动【例1】指出下列各数中,哪些为实数,哪些为虚数,哪些
4、为纯虚数。3+,i,0,i,i4,3i2,10i,i(-),i2,i.解:实数有3+,0, i4,i2;虚数有3i2,10i,i,, i, i ();纯虚数有i, i, i (-)。绿色通道 把握复数的实部、虚部的概念及实数、虚数、纯虚数的定义,作出正确的分类.变式训练1.指出下列复数的实部和虚部。-i,3+i,(+3)i,-i2,i1,0,5+.解:i的实部为,虚部为1;3+i的实部为3,虚部为;(+3)i的实部为0,虚部为+3;i2的实部为1,虚部为0;i-1的实部为-1,虚部为;0的实部为0,虚部为0;5+的实部为5+,虚部为0.【例2】实数k为何值时,复数z=(k2-3k-4)+(k2
5、-5k-6)i分别是(1)实数;(2)虚数;(3)纯虚数;(4)零?分析:根据复数的分类,弄清一个复数满足什么条件分别为实数、虚数、纯虚数,分清复数的实部、虚部。解:(1)当k2-5k6=0,即k=6或k=1时,复数z为实数。(2)当k2-5k60,即k6且k-1时,复数z为虚数.(3)当由得k=4或k=-1.由得k6且k-1,当k=4时,z为纯虚数。(4)当即k=1时,z=0.绿色通道 由复数z的实部、虚部的取值来确定复数z是实数、虚数、纯虚数.在解题时关键是确定z的实部、虚部,并要注意纯虚数的概念满足两条:实部为零,虚部不为零.变式训练2。实数m为何值时,复数z=+(m22m-15)i(1
6、)是实数;(2)是虚数;(3)是纯虚数;(4)是零?解:(1)当即即m=5时,z为实数。(2)当即m5且m3时,z为虚数.(3)当由得m=5或m=-1且m-3,即m=5或m=1;由得m5且m-3。当m=1时,z为纯虚数.(4)当由得m=5或m=1且m3,由得m=5或m=-3.当m=5时,z为零.【例3】复数z=log2(x2-5x+4)+ ilog2(x-3),当x为何实数时,(1)zr;(2)z为虚数;(3)z为纯虚数?分析:依照复数分类求解此题,但要注意对数函数本身的要求。解:(1)当即无解。不存在x使zr.(2)z为虚数,则x4当x4时,z为虚数。(3)当由得x=或x=,由得x3,由得x4,当x=时,z为纯虚数.绿色通道 本题考查了复数的分类及对数函数的定义域,解决此类题时,既要注意复数概念的要求,又要注意实数x的范围。变式训练3.设复数z=lg (m2-2m2)+(m2+3m+2) i,mr.当m为何值时,z是(1)实数;(2)虚数;(3)纯虚数?解:(1)当由得m=1或m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年塔吊施工安全防护合同
- 2024年度互联网金融服务平台合作合同
- 2024年度广告位代理销售合同(新媒体广告)
- 胶带分配器机器市场发展预测和趋势分析
- 贵金属制钱包市场发展现状调查及供需格局分析预测报告
- 2024年度旅游活动赞助合同:旅游赛事赞助与合作协议
- 2024年度智能硬件产品代理销售合同
- 2024年度储藏室保险服务合同
- 洁厕凝胶市场发展预测和趋势分析
- 2024年度办公楼智能化升级合同:某智能化公司与某办公楼物业管理公司关于智能化升级的合同
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计(表格版)
- 2024年广东省高职高考语文试卷及答案
- 2024年广州市海珠区海幢街道办事处招考聘用雇员9人高频500题难、易错点模拟试题附带答案详解
- 人教版八年级上册2.3 《长江的开发与治理》教学设计
- 统编版(2024新版)道德与法治七年级上册教学计划
- 宝洁公司研究报告宝洁B研究报告
- 2024-2030年ICT技术行业市场发展分析及发展趋势与投资前景研究报告
- 佳能EOS700D使用说明书
- 人工智能医疗与生命科学行业研究报告
- 电力专业数据传输(EPDT)通信系统 射频设备技术要求和测试方法 标准编制说明
- 12CJ35 珍珠岩吸声板吊顶与墙面构造-崔申珍珠岩吸声板
评论
0/150
提交评论