西南交大结构力学期末考试_第1页
西南交大结构力学期末考试_第2页
西南交大结构力学期末考试_第3页
西南交大结构力学期末考试_第4页
西南交大结构力学期末考试_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、西南交大结构力学期末考试复习课一、考题题型及分数:A 卷:填空题 10 分;选择题 30 分;组成分析 15 分;计算题( 1、画刚架的 M、V 、N 图 15分; 2、力法解超静定结构;画 M 图 15分; 3、位移法解超静定结构;画 M 图15分)。 B 卷:填空题 10 分;选择题 30 分;问答题 30 分;计算题(力法解超静定结构;画 M 图与 V 图 15;位移法解超静定结构;画 M 图与 V 图 15分)。二、考试范围:本学期所学内容(结构力学1、2、3、4 8、9、10 章; 6章拱的特点及三铰拱的合理拱轴线)三、考试形式:闭卷四、答题时间: 120 分钟五、期末考试复习重点与

2、方法1、计算题:主要复习第 4、 9、 10 章的课外作业(基本未知量数为1)。习4-7(d)、4-8(b)画刚架的M、V、N图;习9-2(a)与10-2(a)用力法与位移法求解;习 9-3(a) 用力法求解;习9-4(a )用位移法求解。2、几何组成分析(主要复习几何组成规则) :实质:三角形规则。 简单体系:直接用基本规则进行组成分析规则 1 (二元体规则) :一个刚片与一个点用两根链杆相连;且三个铰不在一条直线上;则 组成几何不变体系; 并且没有多余约束。 两根不在一条直线上的链杆用一个铰连接后; 称为 二元体。推论 1 :在一个体系上加上或去掉一个二元体;是不会改变体系原来性质的。规则

3、 2(两刚片规则) :两个刚片用一个铰和一根链杆相联结;且三个铰不在一条直线上; 则组成几何不变体系;并且无多余约束。推论 2:两个刚片用既不完全平行也不交于一点的三根链杆相连;则组成几何不变体系;并且无多余约束。规则 3(三刚片规则) :三个刚片用三个铰两两相连;且三个铰不在一条直线上;则组成几 何不变体系;并且无多余约束。推论 3:三个刚片用三个虚铰两两相连 (即 6根链杆);且三个虚铰不在一条直线上;则组成 几何不变体系;并且无多余约束。 复杂体系A 若某体系用不完全交于一点也不完全平行的三根链杆与基础相连;则可以只分析该体系。B 找二元体;如有;可撤去或加上;使体系简化。增加二元体是体

4、系的组装过程;应从一个 基本刚片开始。减去二元体是体系的拆除过程;应从体系的外边缘开始进行。C 从直接观察出的几何不变部分开始;应用体系组成规律;逐步扩大不变部分直至整体。 判断结构体系技巧: 扩大不变体系的范围;撤除或加上二元体;链杆可以当作刚体;刚体有 时可当作链杆; 刚片与地基之间的固定支座可以代换为三根链杆; 刚片与地基之间的铰支座 代换为两根链杆; 两端铰接的折杆或曲杆可用直杆代替; 刚片无所谓形状; 可用杆件或简单 刚片代替复杂刚片。刚好符合规则为无多余约束的几何不变体系; 如在符合规则的基础上还有多余的约束则为有 余约束的几何不变体系。不符合规则时;为瞬变体系与常变体系(几何可变

5、体系 ):几何可变体系条件: 1、约束数目不够2、约束数目够而约束的布置不合理瞬变体系:即在短暂的瞬间是几何可变的体系称为瞬变体系。常变体系:如果三根链杆互相平行又等长;体系是常变体系。几何不变体系:在任意荷载下;几何形状及位置均保持不变的体系(不考虑材料的变形) 几何可变体系:在一般荷载作用下;几何形状及位置将改变的体系(不考虑材料的变形)体系的几何组成与静力特性的关系体系的分类几何纽成蚌性静力特性几何 不系无多余釣耒的 几何不製体系釣耒數目正好 布置合理静;t结构:仅由平 衝杂件就可求出全 部反力和內力有多余釣耒的 几何不变体系釣東有多余 布置合理超静定结构:仅由 平衡条件衣不出全部反力和

6、內力几何 可变体 系几何瞬兖体系釣束魏目够 布置不合理内力为无穷圮 或不确宅几何常变体系缺、y必妥 的约束不石在静力解答结论I无多余约束的几何有多余约束的几何几何瞬变体系几何常变体系约束数目恰好够且约束的布置合理 不变体系q不发生位移静定结构约束数目有多余且约束的布置合理 不变体系不发生位移超静定结构约束数目够但约束的布置 不合理 发生微小位移 不能作为结构约束的布置 不合理 或约束数目不够 发生大位移不能作为结构(机构)注意点:每一刚体及约束,不能遗漏;亦不能 重复使用3、填空题:主要复习结构的分类、特点与内力的解题方法。4、问答题:主要复习本次习题课中的题。5、选择题:主要复习本次习题课中

7、提到的知识点。六、习题课(一)、几何组成分析与简答题举例1对图示结构进行几何组成分析 (若为几何不变体系;指出有无多余联系和个数)。答:杆AD、杆BD与基础用三个不共线的铰两两相连;根据三刚片规则组成一个无多余约 束的几何不变体系;将该不变体系作为新基础;杆CD与新基础用一个铰和一根链杆相连(铰 和链杆不共线);根据两刚片规则组成一个无多余约束的几何不变体系;所以图示结构为一 个无多余约束的几何不变体系。2、超静定结构与静定结构相比较有哪些特性?答:(1 )、超静定结构满足平衡条件和变形条件的内力解答才是唯一真实的解;(2)、超静定结构可产生自内力;(3)、超静定结构的内力与刚度有关;(4)、

8、超静定结构有较强的防护能力;(5)、超静定结构的内力和变形分布比较均匀;且变形小;刚度大。3、写出工程力学中四大内力、四种基本变形与四大刚度的名称。答:(1)四大内力为:轴力、剪力、弯矩与扭矩;(2)四种基本变形为:轴向拉伸与压缩、剪切、扭转与弯曲;(3)四大刚度为:抗拉压刚度、抗弯刚度、抗扭刚度与抗剪切刚度。4、静定刚架常见的基本型式有哪些?答:悬臂刚架;三铰刚架;简支刚架。5、超静定结构的类型有哪些?答:超静定梁;超静定刚架;超静定桁架;超静定组合结构;超静定拱;超静定排架。6、静定多跨梁当荷载作用在基本部分上时;在附属部分上是否引起内力?为什么?、答:不会。因为基本部分为一个独立的几何不

9、变部分;基本部分的几何不变形不受附属部分的影响。7、应用虚力原理求位移时;怎样选择虚设单位荷载?答:根据结构某一部位所要求解的位移的具体形式给出虚设单位力。例如;虚设单位力偶求解某一点的转角;虚设一对作用在一条直线的单位力求解两点之间的相对位移;等等。8、图乘法的适用条件是什么?求变截面梁和拱的位移时是否可用图乘法?答:图乘法的使用条件:(1、杆段的EI为常数;(2、杆段轴线为直线;(3)各杆段的 图和 图中至少有一个为直线图形。 对于变截面梁以及拱不能采用图乘法;因为它们都不能同时满足以上三个条件。9、用力法解超静定结构的思路是什么?什么是力法的基本体系和基本未知量?答:思路:首先将超静定结

10、构的多余约束去掉;使它变成一个没有多余约束的静定结构;在 静定结构对应的去掉多余约束处代之以多余未知力;然后;根据去掉约束处的位移协调条件;建立力法方程;求出未知力;最后;将求出的多余未知力作用在静定结构中进行求解。基本体系:超静定结构(原结构)在去掉多余约束后得到一个没有多余约束的静定结构;将此静定结构作用与原结构相同的荷载;以及在其对应的原结构去掉约束处作用多余未知力; 从而得到一个用于力法计算的基本体系。基本未知量数目就是使超静定结构变成一个静定结构所去掉的多余约束的数目。10、为什么支座处的角位移可不选作基本未知量?试比较当支座处角位移选做与不选做基本 未知量时两种计算方法的优缺点?答

11、:因为铰支座处的角位移并非独立的;它依赖于刚结点的角位移;因此;可以不选作为基本未知量。选作基本未知量与不选作基本未知量时优缺点:对于手算;宜采用不选作基本未知量;主要考虑到未知量少;计算简便;但对于电算;以选作基本未知量;这样可将各杆统 一为两端固定梁;便于编写计算程序。(二八计算题举例:1、绘制刚架的内力图:1 )、求出水平支座反力 (直观确定);2)、由公式法求部分杆端弯矩; 由区段叠加法画弯矩图;3)、由M图画V图(dM(x)/dx=V(x) ); 4)、由V图画N图(取刚结点为研究对象)。2、试用力法计算图示结构;作弯矩图。EI为常数;l=4m。4 kNI m1也L1. IL13、试

12、用位移法计算图示结构;作弯矩图与剪力图;EI为常数。(三)、单项选择题、填空题复习重点:1体系的分类:详见第 2页(体系的几何组成与静力特性的关系)图2、体系简单组成规则:详见第 1页3、刚片、约束、自由度概念: 刚片:就是几何尺寸和形状都不变的平面刚体。 自由度:是指确定体系位置所需独立坐标的数目。以刚片为对象;以地基为参照物;平面体系的计算自由度为:W = 3M-(3G+2H+B)其中:M为个刚片个数;G为单刚结点个数;H为单铰结点个数;B为链杆数;3M为总自由度数;(3G+2H+B)为总约束数。W0 ;表明体系缺少足够的约束;是几何可变的;W=0 ;表明体系具有成为几何不变所需的最少约束

13、数目。W0 ;表明体系在联系数目上还有多余;体系具有多余约束。注:a.点在平面内的自由度为:2b.刚片在平面内的自由度为:3c.基础自由度为:零 约束:即减少自由度的装置称为约束(或联系)。必要约束:在体系中增加或去掉某个约束;体系的自由度数目将随之变化;则此约束称为必要约束。多余约束:在体系中增加或去掉某个约束;体系的自由度数目并不因此而改变;则此约束称为多余约束。注:可变体系可能有多余约束a实铰:由两根杆件端部相交所形成的铰;称为实铰。b虚铰(瞬铰):由两根杆件中间相交或延长线相交形成的铰;称为虚铰。注:形成虚铰的 两链杆必须连接相同的两个刚片。4、各约束相当的链杆数目:一根链杆(或可动铰

14、支座)相当于一个约束;可减少一个自由度; 一个单铰(或固定铰支座) 相当于两个约束(亦相当于两根链杆);可以减少两个自由度;连接 n个刚片的复铰(连接两 个以上刚片的铰);相当于n-1个单铰;相当于2 (n-1)个约束;一个刚结点(或一个固定端 支座)能减少三个自由度;相当于三个约束 (相当于三根链杆);连接n个刚片的复刚结可折 算成(n-1)个单刚结;相当于 3 (n-1)个约束。5、刚架内力图画法及有关规定: 画法:a求刚架的支座反力(悬臂刚架可以不求反力);b、 利用截面法或公式法求刚架各杆杆端内力(内力符号采用双下标);c、 利用区段叠加法作弯矩图;用控制截面法(即内力图的规律)作剪力

15、图与轴力图(V ; N 图要标正负号;M图不标正负号);d、内力图的校核。 规定:a内力正负号规定弯矩:使刚架内侧受拉的弯矩为正;反之为负(刚架杆件外伸部分不规定正负号;M图画在杆件受拉边);剪力:以剪力对隔离体内截面附近一点的力矩顺时针转动为正;反之为负(V图可画在杆的任一边);轴力:以拉力为正;压力为负(N图可画在杆的任一边)。6、截面法求结构截面内力的步骤顺序:切开、代替、平衡7、虚设力状态的方法与种类:种类: 线位移加集中力;角位移加力状态的虚设方法集中力偶地点:所求位移处方位:所求位移方位指向:假定大小:单位广义力或单位广义荷载-P=1 、F=1个数:绝对位移1个;相对位移2个8、抗

16、弯刚度的表示及意义:9、桁架分类(几何组成分类)及解题方法: 分类:a简单桁架 一一由基础或一个基本铰结三角形开始;依此增加二元体所组成的桁架; b联合桁架:由简单桁架按几何不变体系组成法则所组成的;c复杂桁架:不属于以上两类桁架之外的其它桁架。 解题方法:基本方法(结点法和截面法)、实际应用一般是这两种基本方法的灵活选择、联合应用(联合法)A 结点法: 即以结点作为研究对象来计算结构内力的方法。 (结点法的计算要点: a取单结点为分离体;b其受力图为一平面汇交力系;c可以建立二个方程(未知 轴力设为正 ); d 可求二个未知量)B 截面法:即截取桁架一部分作为研究对象计算桁架内力的方法。 (

17、要求:截面 法将桁架截成二部分; 每一部分至少有一根完整的杆件 (否则为结点法);要点: 一个截面将桁架截成二部分; 取一部分作为研究对象时。 隔离体上的力是一个平 面任意力系; 可列出三个独立的平衡方程。 取隔离体时一般切断的未知轴力的杆 件不多余三根。)零杆:即结点上单杆轴力等于零;称为零杆。10、静定结构的几何组成特征:没有多余约束的几何不变体系。11、超静定次数的确定方法: (1)、超静定次数:多余约束或多余未知力的个数。注:去掉多余约束使超静定 结构变成静定结构;所去掉的多余约束数目就是结构的超静定次数。( 2)、确定超静定次数的方法: 解除多余约束法。 组成规则只适合于铰接体 系。

18、解除多余约束法:梁、钢架、拱;几何组成分析法:桁架、组合结构; 公式法(计算自由度) :任何超静定结构技巧:增加约束法解除多余约束的方式通常有以下几种: 去掉一个链杆、 去掉一个可动铰支座或切断一个链杆相当于去掉一个约束 (链 杆可以作为约束;亦可以作为被约束物体) 。必要约束不能去掉;多余约束的位 置不任意、不唯一。 去掉一个单铰或固定铰支座 (定向支座) 相当于去掉两个约束; 去掉一个固 定端(或刚结点)相当于去掉三个约束; 切断一个梁式杆相当于去掉三个约束; 刚结点变铰接或固定端变固定铰支座相当于去掉一个约束 (固定端变可动铰支 座相当于去掉一个约束)注:、对于同一超静定结构;由于采用不

19、同方式去掉多余的约束;可以得到不 同的静定结构;但所去约束数目总是一样的;、去掉多余的约束后的结构;必 须是几何不变体系。即为了保证结构的几何不体性; 某些约束是绝对不能去掉的; 、去掉多余的约束后的结构;必须是静定结构。即应该把多余约束全部去掉。 对于具有较多框格的结构; 可按框格的数目确定; 因为一个封闭框格; 其超静 定次数等于三。当结构的框格数目为 f ;则 n=3f 。12、拱式结构的特点:拱的基本特点是;在竖向荷载作用下会产生水平推力。水 平推力的存在与否是区别拱与梁的主要标志。13、虚功的概念: 虚功:力在沿其它因素引起的位移上所做的功; 称为虚功 (其它因素如另外的荷 载作用、

20、温度变化或支座移动等) 。注:虚功中的虚强调作功的力与产生位移的 原因无关; 而不是虚无的意思。 力不是产生位移的原因; 位移也不是力作用的结 果。14、位移的分类及求解方法(掌握图乘法) :按位置变化的参照物可分为: (1) 绝对位移: 指结构上的一个指定点或截面; 位移后的新位置相对其位移前旧位置 的改变;(2)相对位移:指结构上的两个指定点或截面;位移后新的位置关系相 对其位移前旧位置关系的改变。绝对位移静坐标系)线位移:截面形心的A直线移动r水平线位移X竖向线位移位 移 的 分 类A-角位移:截面g转动的角度(转角)K L rABCCIcC u广义位移位移相对(动坐标系)相对线位移:

21、两个截面形心的相对直线移动距离ABi注:相对位移-同向相减,异向相加:目对角位移:两个截面的相对转角AB15、二次抛物线的面积与形心:见下页(图乘法与位移法要记的图表)16、 图乘法的条件:(1)杆轴为直线;(2)EI为常数;(3)M与MP弯矩图中至少有一个是直 线图形。17、超静定结构与静定结构的特性:(1)静定结构:全部反力和内力只用平衡条件便可确定的结构。几何特征:没有多余约束的几何不变体系。静力特征:仅由静力平衡方程就能求出所有内力和反力。(2)超静定结构:仅用平衡条件不能确定全部反力和内力的结构。几何特征:有多余约束的几何不变体系。静力特征:仅由静力平衡方程不能求出所有内力和反力。1

22、8、常见荷载作用下三铰拱的合理拱轴线:径向均布荷载下;三铰拱的合理轴线是圆弧线;水平均布荷载下;三铰拱的合理轴线是抛物 线;荷载由拱顶向拱脚连续分布、逐渐增大时;三铰拱的合理轴线是悬链线。19、桁架的零杆判别方法:零杆:结点上单杆轴力等于零;称为零杆。结点:L形结点、T形结点、X形结点、K形结点;利用结构的对称性:即由于结构对称;荷载对称;其内力和反力一定对称。结构反对称;荷 载反对称;其内力和反力一定也反对称。利用这个规律可以进行零杆的判断。20、对称结构在正对称荷载作用下的特性:正对称荷载作用下; 结构的内力及变形是对称的;反对称荷载作用下; 结构的内力及变形是反对称的。正对称的超静定结构

23、;在对称的荷载作用下;只有对称的多余未知力;反对称的多余未知力 必为零;对称的超静定结构;在反对称的荷载作用下;只有反对称的多余未知力;对称的多余未知力必为零。21、位移法的基本未知数的确定: 位移法基本未知量数目应等于结构结点的独立角位移和线 位移二者之和。在位移法中; 基本未知量是各结点的独立角位移和线位移。计算时; 应首先确定独立的角位移和线位移数目。 由于在同一结点处;各杆端的转角都是相等的;因此每一个刚结点只有 一个独立的角位移未知量。 在固定支座处; 其转角等于零为已知量。 至于铰结点或铰支座处 各杆端的转角;它们不是独立的; (可由杆另一端转角确定)可不作为基本未知量。、独立结点角位移数:结构上可动刚结点数(不分单刚结点与复刚结点)即为位移法计算的结点独立角位移数。、独立结点线位移:在一般情况下;每个结点均可能有水平和竖向两个线位移。但通常对受弯杆件略去其轴向变形; 其弯曲变形也是微小的; 于是可以认为受弯直杆的长度变形后保 持不变; 故每一受弯直杆就相当于一个约束; 从而减少了结点的线位移数目; 故结点只有一 个独立线位移 (侧移 )。方法:A、直观法确定;B、几何方法确定:将结构中所有刚结点和固定端支座;代之以铰结点和 铰支座;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论