高一三角函数题型总结_第1页
高一三角函数题型总结_第2页
高一三角函数题型总结_第3页
高一三角函数题型总结_第4页
高一三角函数题型总结_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、题型总结1. 已知角范围和其中一个角的三角函数值求任意角三角函数值方法:画直角三角形 利用勾股定理先算大小后看正负例题:1.已知为第二象限角,求 、 、的值 2.已知为第四象限角,求 、 、的值 2. 一个式子如果满足关于和的分式 齐次式 可以实现之间的转化例题:1.已知的值为_.2. 已知,则1.=_. 2.=_. 3.=_.(“1”的代换)3. 已知三角函数和的和或差的形式求. 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍)例题:已知,+=,求. -4.利用“加减”大角化小角,负角化正角,求三角函数值例题:求值:sin(-)+costan4 -cos= ;练习题1.已

2、知sin=,且为第二象限角,那么tan的值等于 ( )(A) (B) (C) (D)2.已知sincos=,且,则cossin的值为 ( )(A) (B) (C) (D)3.设是第二象限角,则= ( )(A) 1 (B)tan2 (C) - tan2 (D) 4.若tan=,0) 针对x的变化如果扩大到原来A倍(A0) 针对y的变化可理解为“针对的相反变化”图像变换一:左右平移1、把函数图像上所有的点向左平移个单位,所得函数的解析式为 _2、把函数图像上所有的点向右平移个单位,所得函数的解析式为 _图像变换二:纵向伸缩3、 对于函数的图像是将的图像上所有点的_(“横”或”纵”)坐标_(伸长或缩

3、短)为原来的_而得到的图像。4、 由函数的图像得到的图像,应该是将函数上所有点的_(“横”或“纵”)坐标_(“伸长”或“缩短”)为原来的_(横坐标不变)而得到的图像。图像变换三:横向伸缩5、 对于函数的图像是将的图像上所有点的_(“横”或“纵”)坐标_(“伸长”或“缩短”)为原来的_(纵坐标不变)而得到的图像。图像变换四:综合变换6、 用两种方法将函数的图像变换为函数的图像解:方法一:方法二:总结:方法一: 先伸缩后平移 方法二:先平移后伸缩7、用两种方法将函数的图像变换为函数的图像方法一:方法二:1.要得到函数的图象,只需将函数的图象( )(A)向左平移个单位 (B)向右平移个单位(C)向左

4、平移个单位 (D)向右平移个单位2.将函数y=sin3x的图象作下列平移可得y=sin(3x+)的图象 (A) 向右平移 个单位 (B) 向左平移 个单位(C)向右平移 个单位 (D)向左平移 个单3.将函数的图象上每点的横坐标缩小为原来的(纵坐标不变),再把所得图象向左平移个单位,得到的函数解析式为( ) 4.把函数的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A) (B) (C) (D)不同名三角函数图像的平移问题:化同名,利用,一定正弦化余弦。把系数变成“1”再进行平移。 5.为了得到函数的图象,可以

5、将函数的图象( ) (A)向右平移个单位长度 (B)向右平移个单位长度(C)向左平移个单位长度 (D)向左平移个单位长度6.为得到函数的图像,只需将函数的图像( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位 D向右平移个长度单位7.为了得到函数的图象,可以将函数的图象( )A向右平移个单位长度B向右平移个单位长度C向左平移个单位长度D向左平移个单位长度根据图像求三角函数表达式 :代图像上已知点坐标(注意是图像上向上的点还是向下的点,最好代入图像的最高点或者最低点)1.2.下列函数中,图像的一部分如右图所示的是( )(A) (B)(C) (D)3已知函数的部分图象如右上图所示,则( )A. B. C. D. 4.下列函数中,图象的一部分如右图所示的是A. B. C. D.5.函数的一个周期内的图象如下图, 求y的解析式。(其中 ) 6.已知函数(, ,)的一段图象如图所示,求函数的解析式;三角函数的奇偶性问题: 非奇非偶函数 偶函数 奇函数 正弦型或者余弦型函数例如:如果具有奇偶性,必须是的整数倍。总结: 1.=(奇数倍变) 函数是偶函数 2.= (偶数倍不变)函数是奇函数三角函数奇偶性题型- 当m是整数倍具有奇偶性例题:1.向左平移m()个单位满足表达式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论