2021年人教版八年级数学上册教案_第1页
2021年人教版八年级数学上册教案_第2页
2021年人教版八年级数学上册教案_第3页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、优质教案教 案2021年人教版八年级数学上册教案学校:XXXX年级:XXXX教师:XXXX日期:2021年XX月XX日优质教案2021年人教版八年级数学上册教案许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。下面由我为大家整理了关于人教版八年级数学上册教案,供大家参考。人教版八年级数学上册教案1:因式分解教学目标:1、理解运用平方差公式分解因式的方法。2、掌握提公因式法和平方差公式分解因式的综合运用。3、进一步培养学生综合、分析数学问题的能力。教学重点:运用平方差公式分解因式。教学难点:高次指数的转化,提公因式法,平方差公式的灵活运用。教学案例:我们数学

2、组的观课议课主题:1、关注学生的合作交流2、如何使学困生能积极参与课堂交流。在精心备课过程中,我设计了这样的自学提示:1、整式乘法中的平方差公式是_,如何用语言描述?把上述公式反过来就得到_,如何用语言描述?2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?-x2+y2-x2-y24-9x2(x+y)2-(x-y)2a4-b43、试总结运用平方差公式因式分解的条件是什么?4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?5、试总结因式分解的步骤是什么?师巡回指导,生自主探究后交流合作。生交流热情很高,但把全部问题分析完已用了30分钟。生展示自学成果。生1:-

3、x2+y2能用平方差公式分解,可分解为(y+x)(y-x)生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。生5:a4-b4可分解为(a2+b2)(a2-b2)生6:不对,a2-b2还能继续分解为a+b)(a-b)师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。反思:这节

4、课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:(1)我在备课时,过高估计了学生的能力,问题2中的、多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:下列多项式能用平方差

5、公式因式分解吗?为什么?可能效果会更好。(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像、可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完

6、了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远人教版八年级数学上册教案2:探索勾股定理教学目标

7、:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示投影2(书中的P2图12)并回答:1、观察图

8、1-2,正方形A中有_个小方格,即A的面积为_个单位。正方形B中有_个小方格,即A的面积为_个单位。正方形C中有_个小方格,即A的面积为_个单位。2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图12中,A,B,C之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图11中的A.B,C的关系呢?二、做一做出示投影3(书中P3图14)提问:1、图13中,A,B,C之间有什么关系?2、图14中,A,B,C之间有什么关系?3、从图11,12,13,1|4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正

9、方形面积。三、议一议1、图11、12、13、14中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、想一想这里的29英寸(74厘米)的电视机,指的是屏幕

10、的长吗?只的是屏幕的款吗?那他指什么呢?五、巩固练习1、错例辨析:ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边综上所述这个题目条件不足,第三边无法求得。2、练习P71.11六、作业课本P71.12、3、4人教版八年级数学上册教案3:提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与

11、方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2)

12、;(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫

13、做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公

14、因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-(y-x)23a2(y-x)+4b2(y-x)2=-(y-x)23a2(y-x)+4b2=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)23a2(x-y)-4b2=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.8412+120.6-0.4412.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.8412+120.6-0.4412=12(0.84+0.6-0.44)=121=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论