(完整word版)高中数学新课圆锥曲线方程教案(7)_第1页
(完整word版)高中数学新课圆锥曲线方程教案(7)_第2页
(完整word版)高中数学新课圆锥曲线方程教案(7)_第3页
(完整word版)高中数学新课圆锥曲线方程教案(7)_第4页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(完整word版)高中数学新课圆锥曲线方程教案(7)(完整word版)高中数学新课圆锥曲线方程教案(7) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)高中数学新课圆锥曲线方程教案(7))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整word版)高中数学新课圆锥曲线方程教案(7)的全部内容。(完整

2、word版)高中数学新课圆锥曲线方程教案(7)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。下面是本文详细内容。最后最您生活愉快 o(_)o 课 题:82椭圆的简单几何性质(三)教学目的:1。 能推导,掌握椭圆的焦半径公式,并能利用焦半径公式解决有关与焦点距离有关的问题;2能利用椭圆的有关知识解决实际问题,及综合问题;3体会数学形式的简洁美,增强爱国主义观念教学重点:焦半径公式的的推导及应用教学难点:焦半径公式的的推导,应用

3、问题中坐标系的建立授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2标准方程:, ()3椭圆的性质:由椭圆方程() (1)范围: ,椭圆落在组成的矩形中(2)对称性:图象关于轴对称图象关于轴对称图象关于原点对称 原点叫椭圆的对称中心,简称中心轴、轴叫椭圆的对称轴从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: ,加两焦点共有六个特殊点。 叫椭圆的长轴,叫椭圆的短轴长分别为 分别为椭圆的长半轴长和短半轴长.椭圆的

4、顶点即为椭圆与对称轴的交点 (4)离心率: 椭圆焦距与长轴长之比 椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例 椭圆变扁,直至成为极限位置线段,此时也可认为圆为椭圆在时的特例 4.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数就是离心率椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式5椭圆的准线方程:椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称 对于,左准线;右准线对于,下准线;上准线焦点到准线的距离(焦参数)二、讲解新课: 椭圆

5、的焦半径公式:设是椭圆的一点,和分别是点与点,的距离。那么(左焦半径),(右焦半径),其中是离心率推导方法一: ,即(左焦半径),(右焦半径)推导方法二:,同理有焦点在y轴上的椭圆的焦半径公式: ( 其中分别是椭圆的下上焦点)注意:焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加三、讲解范例例1 如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心)为一个焦点的椭圆,已知它的近地点a(离地面最近的点)距地面439km,远地点b(离地面最远的点)距地面2384km,并且、a、b在同一直线上,设地球半径约为6371km,求卫星运行的轨道方

6、程 (精确到1km)解:建立如图所示直角坐标系,使点a、b、在轴上,则 oa|oa|63714396810ob|o|b637123848755解得7782.5,972.5.卫星运行的轨道方程为 例2 椭圆,其上一点p(3,)到两焦点的距离分别是6.5和3。5,求椭圆方程解:由椭圆的焦半径公式,得,解得,从而有 所求椭圆方程为 四、课堂练习:1p为椭圆上的点,且p与的连线互相垂直,求p解:由题意,得64,p的坐标为,,2椭圆上不同三点与焦点f(4,0)的距离成等差数列,求证证明:由题意,得 23设p是以0为中心的椭圆上任意一点,为右焦点,求证:以线段为直径的圆与此椭圆长轴为直径的圆内切证明:设椭

7、圆方程为,(),焦半径是圆的直径,则由知,两圆半径之差等于圆心距,所以,以线段为直径的圆与此椭圆长轴为直径的圆内切五、小结 :焦半径公式的推导方法及形式;实际问题中坐标系的建立应使问题易求解 六、课后作业:七、板书设计(略)八、课后记: 结尾处,小编送给大家一段话。米南德曾说过,“学会学习的人,是非常幸福的人。在每个精彩的人生中,学习都是永恒的主题。作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。各行各业从业人员只有不断的学习,掌握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场的需求.本文档也是由我工作室专业人员编辑,文档

8、中可能会有错误,如有错误请您纠正,不胜感激!at the end, xiao bian gives you a passage。 minand once said, people who learn to learn are very happy people。 in every wonderful life, learning is an eternal theme. as a professional clerical and teaching position, i understand the importance of continuous learning, life is dil

9、igent, nothing can be gained, only continuous learning can achieve better self。 only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market。 this document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!此处将被文件名替换 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论