常微分方程数值解实验报告_第1页
常微分方程数值解实验报告_第2页
常微分方程数值解实验报告_第3页
常微分方程数值解实验报告_第4页
常微分方程数值解实验报告_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、常微分方程数值解实验报告 学院:数学与信息科学 专业:信息与计算科学 姓名:郑思义 学号:201216524 课程:常微分方程数值解实验一:常微分方程的数值解法1、 分别用Euler法、改进的Euler法(预报校正格式)和SK法求解初值问题。(h=0.1)并与真解作比较。1.1实验代码:%欧拉法function x,y=naeuler(dyfun,xspan,y0,h)%dyfun是常微分方程,xspan是x的取值范围,y0是初值,h是步长x=xspan(1):h:xspan(2);y(1)=y0; for n=1:length(x)-1 y(n+1)=y(n)+h*feval(dyfun,x

2、(n),y(n);end %改进的欧拉法function x,m,y=naeuler2(dyfun,xspan,y0,h)%dyfun是常微分方程,xspan是x的取值范围,y0是初值,h是步长。%返回值x为x取值,m为预报解,y为校正解x=xspan(1):h:xspan(2);y(1)=y0; m=zeros(length(x)-1,1);for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n);y(n+1)=y(n)+h*k1; m(n)=y(n+1);k2=feval(dyfun,x(n+1),y(n+1);y(n+1)=y(n)+h*(k1+k2)/2

3、;end %四阶SK法function x,y=rk(dyfun,xspan,y0,h)%dyfun是常微分方程,xspan是x的取值范围,y0是初值,h是步长。x=xspan(1):h:xspan(2);y(1)=y0; for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n); k2=feval(dyfun,x(n)+h/2,y(n)+(h*k1)/2); k3=feval(dyfun,x(n)+h/2,y(n)+(h*k2)/2); k4=feval(dyfun,x(n)+h,y(n)+h*k3); y(n+1)=y(n)+(h/6)*(k1+2*k2+2

4、*k3+k4); end%主程序x=0:0.1:1;y=exp(-x)+x;dyfun=inline(-y+x+1); x1,y1=naeuler(dyfun,0,1,1,0.1);x2,m,y2=naeuler2(dyfun,0,1,1,0.1);x3,y3=rk(dyfun,0,1,1,0.1);plot(x,y,r,x1,y1,+,x2,y2,*,x3,y3,o);xlabel(x);ylabel(y);legend(y为真解,y1为欧拉解,y2为改进欧拉解,y3为SK解,Location,NorthWest);1.2实验结果:x真解y欧拉解y1预报值m校正值y2SK解y30.0 1.0

5、0001.00001.00001.00000.1 1.00481.00001.00001.00501.00480.2 1.01871.01001.01451.01901.01870.3 1.04081.02901.03711.04121.04080.4 1.07031.05611.06711.07081.07030.5 1.10651.09051.10371.10711.10650.6 1.14881.13141.14641.14941.14880.7 1.19661.17831.19451.19721.19660.8 1.24931.23051.24751.25001.24930.9 1.3

6、0661.28741.30501.30721.30661.0 1.36791.34871.36651.36851.36792、 选取一种理论上收敛但是不稳定的算法对问题1进行计算,并与真解作比较。(选改进的欧拉法)2.1实验思路:算法的稳定性是与步长h密切相关的。而对于问题一而言,取定步长h=0.1不论是单步法或低阶多步法都是稳定的算法。所以考虑改变h取值范围,借此分析不同步长会对结果造成什么影响。故依次采用h=2.0、2.2、2.4、2.6的改进欧拉法。2.2实验代码:%主程序x=0:3:30;y=exp(-x)+x;dyfun=inline(-y+x+1); x1,m1,y1=naeule

7、r2(dyfun,0,20,1,2);x2,m2,y2=naeuler2(dyfun,0,22,1,2.2);x3,m3,y3=naeuler2(dyfun,0,24,1,2.4);x4,m4,y4=naeuler2(dyfun,0,26,1,2.6);subplot(2,2,1)plot(x,y,r,x1,y1,+);xlabel(h=2.0);subplot(2,2,2)plot(x,y,r,x2,y2,+);xlabel(h=2.2);subplot(2,2,3)plot(x,y,r,x3,y3,+);xlabel(h=2.4);subplot(2,2,4)plot(x,y,r,x4,y

8、4,+);xlabel(h=2.6);2.3实验结果:xh=2.0h=2.2h=2.4h=2.60.0 1.0000 1.0000 1.0000 1.0000 0.1 3.0000 3.4200 3.8800 4.3800 0.2 5.0000 5.8884 6.9904 8.3684 0.3 7.0000 8.4158 10.4418 13.4398 0.4 9.0000 11.0153 14.3979 20.4388 0.5 11.0000 13.7027 19.1008 30.8690 0.6 13.0000 16.4973 24.9092 47.4068 0.7 15.0000 19.

9、4227 32.3536 74.8161 0.8 17.0000 22.5077 42.2194 121.5767 0.9 19.0000 25.7874 55.6687 202.7825 1.0 21.0000 29.3046 74.4217 345.3008 实验结果分析:从实验1结果可以看出,在算法满足收敛性和稳定性的前提下,Eluer法虽然计算并不复杂,凡是精度不足,反观改进的Eluer法和SK法虽然计算略微复杂但是结果很精确。实验2改变了步长,导致算法理论上收敛但是不满足稳定性。结果表示步长h越大,结果越失真。对于同一个问题,步长h的选取变得尤为重要,这三种单步法的绝对稳定区间并不一

10、样,所以并没有一种方法是万能的,我们应该根据不同的步长来选取合适的方法。实验二:Ritz-Galerkin方法与有限差分法1、 用中心差分格式求解边值问题取步长h=0.1,并与真解作比较。1.1实验代码:%中心差分法function U=fdm(xspan,y0,y1,h)%xspan为x取值范围,y0,y1为边界条件,h为步长N=1/h;d=zeros(1,N-1);for i=1:N x(i)=xspan(1)+i*h; q(i)=1; f(i)=x(i);endfor i=1:N-1 d(i)=q(i)*h*h+2;end a=diag(d); b=zeros(N-1); c=zeros

11、(N-1);for i=1:N-2 b(i+1,i)=-1;endfor i=1:N-2 c(i,i+1)=-1;endA=a+b+c;for i=2:N-2 B(i,1)=f(i)*h*h;end B(1,1)=f(1)*h*h+y0; B(N-1,1)=f(N-1)*h*h+y1; U= inv(A)*B;%主程序x=0:0.1:1;y=x+(exp(1)*exp(-x)/(exp(2)-1)-(exp(1)*exp(x)/(exp(2)-1);y1=fdm(0,1,0,0,0.1);y1=0,y1,0;plot(x,y,r,x,y1,+)xlabel(x);ylabel(y);legen

12、d(y真解,y1中心差分法,Location,NorthWest);1.2实验结果:xy真解y1中心差分法0.0 0.0000 0.0000 0.1 0.0148 0.0148 0.2 0.0287 0.0287 0.3 0.0409 0.0408 0.4 0.0505 0.0504 0.5 0.0566 0.0565 0.6 0.0583 0.0582 0.7 0.0545 0.0545 0.8 0.0443 0.0443 0.9 0.0265 0.0265 1.0 0.0000 0.0000 2、用Ritz-Galerkin方法求解上述问题,并与真值作比较,列表画图。2.1实验代码:%Ri

13、tz_Galerkin法function vu=Ritz_Galerkin(x0,y0,x1,y1,h)%x0,x1为x取值范围,y0,y1为边界条件,h为步长N=1/h;syms x;for i=1:N fai(i)=x*(1-x)*(x(i-1); dfai(i)=diff(x*(1-x)*(x(i-1); endfor i=1:N for j=1:N fun=dfai(i)*dfai(j)+fai(i)*fai(j); A(i,j)=int(fun,x,0,1); end fun=x*fai(i)+dfai(i); f(i)=int(fun,x,0,1);endc=inv(A)*f;pr

14、oduct=c.*fai; sum=0; for i=1:N sum=sum+product(i);endvu=;for y=0:h:1 v=subs(sum,x,y); vu=vu,v; endy=0:h:1;yy=0:0.1:1; u=sin(yy)/sin(1)-yy; u=vpa(u,5);vu=vpa(vu,5); %主程序x=0:0.1:1;y=x+(exp(1)*exp(-x)/(exp(2)-1)-(exp(1)*exp(x)/(exp(2)-1);y1=Ritz_Galerkin(0,0,1,0,0.1);y1=double(y1);plot(x,y,r,x,y1,+)xlabel(x);ylabel(y);legend(y为真解,y1为RG法,Location,NorthWest);2.2实验结果:xy真解y1RG法0.0 0.0000 0.0000 0.1 0.0148 0.0148 0.2 0.0287 0.0287 0.3 0.0409 0.0409 0.4 0.0505 0.0505 0.5 0.0566 0.0566 0.6 0.0583 0.0583 0.7 0.0545 0.0545 0.8 0.0443 0.0443 0.9 0.0265 0.0265 1.0 0.0000 0.0000 3、若边值条件为y(0)=0,y(1)=1;则上述问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论