《小数乘法》重难点突破_第1页
《小数乘法》重难点突破_第2页
《小数乘法》重难点突破_第3页
《小数乘法》重难点突破_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小数乘法重难点突破突破建议:(1)充分利用主题图展示的数学信息(风筝单价及要解决的问题),为学生理解算理提供感性支撑。教学中能够放手让学生利用已有的知识经验独立解决“买3个蝴蝶风筝多少钱”的问题,学生解答后,从中选出一种较为简单的方法(如35角3)实行重点分析、说理,引导学生用简洁的语言实行总结和概括:先把3.5元转化为35角,再计算35角3,最后将结果105角转化为10.5元。从而通过“元、角”这些具体量的进率关系,初步为算理的理解提供感性支撑,为后面例2的教学做好铺垫。(2)引导学生使用“转化”的思想方法,通过旧知迁移,理解和掌握新知。要注意引导学生紧紧抓住例1中的计算经验,特别是“将3.

2、5元转化为35角”的经验来学习例2。放手让学生应用已有的整数乘法经验自主计算“0.725”,列出竖式,并尝试对过程做出合理的解释,有效地突破难点。(3)即时引导学生梳理和总结小数乘整数的竖式计算要点。在学生理解上述算理的基础上,重点引导学生归纳用竖式计算的要点:按整数乘法的规则实行计算;处理好积中小数点位置的确定,因数中一共有几位小数,积中也应有几位小数;如果积的小数部分末尾有0,应根据小数的基本性质去掉小数末尾的“0”。2.积的小数数位不够时如何确定小数点的位置突破建议:(1)在教学小数乘小数及相对应的练习中,应结合具体的计算实例组织学生观察、比较因数与积的小数位数,引导学生发现因数与积的小

3、数位数之间的关系,为准确确定积的小数点的位置提供操作依据。(2)在教学例4时,能够先放手让学生按照一般方法计算,引出“乘得的积的小数位数不够,怎么点小数点?”的问题,教师再来引导学生去寻找解决问题的办法,让学生自己想到能够根据小数点移动引起小数大小的变化规律来解决问题,理解乘得的积的小数位数不够时,应该先在前面用0补足,再点小数点,让学生经历发现问题解决问题的学习过程,留下较为深刻的印象。(3)设计具有针对性的练习(不一定要完整的计算),让学生明确:一定要数清楚两个因数中小数的位数,弄清楚应补上几个0;确定积的小数点位置时,应先点上小数点,然后再把小数末尾的0去掉。3.理解“倍”能够是小数,能

4、解决求一个数的小数倍的实际问题,掌握计算方法突破建议:(1)激活已有经验,协助学生扩充“倍”的理解。学生在第一学段已经对“倍”有了初步理解,对两个数量之间“倍”的关系并不陌生,知道求一个数的几倍是多少用乘法计算。在本课教学时,教师应协助学生激活已有的旧知,让学生先解决整数倍的数学问题,并说一说列式的理由,以利于学生在分析、解决“小数倍”的问题时,能从对整数倍的理解扩充到对“小数倍”的理解。(2)借助具体事例,引导学生理解小数倍的含义。在教学例5时,能够借助生动的情境,让学生用自己的方式读题,再用自己的话表述题意。在表述“鸵鸟的最高速度是非洲野狗的1.3倍”时,应尽可能给学生创设表述的空间,让学

5、生充分表述自己的理解,着重是对“1.3倍”含义的理解,从具体事件中领会“倍”不但能够是整数,也能够是小数,有时用小数倍表示两个数量之间的关系更为直观。4.理解求积的近似数往往是“实际应用”的需要突破建议:(1)在教学“积的近似数”时,能够明确揭示求“积的近似数”的背景与一般方法:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时能够根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。(2)在例题教学中,可借助教材创设的情境,从例题给出的信息“人的嗅觉细胞约有0.049亿个”和要解决的问题“狗约有多少亿个嗅觉细胞?”使学生理解到,生活实际中有些小数我们既无可能、又无必要知道它

6、们的准确值,只要知道它们的近似数就能够了,使学生感受到求积的近似数是“实际应用”的需要。(3)选择、设计一些与求积的近似数相关的实际问题,让学生在解决问题的过程中辨析、体会。如:教材第13页第3题求“这台计算机有多重?”为什么要“得数保留整数”?又如:教材第11页“做一做”第2题求“买2.5 kg应付多少钱?”为什么没有明确提出求近似数的要求,但也要自觉地“得数保留两位小数”?使学生在解决问题的过程中,体会到求积的近似数不是随意的要求,而确实是“实际应用”的需要。5.应用乘法运算定律实行小数的简便计算突破建议:(1)在教学将整数乘法运算定律推广到小数时,教师要通过具体的例子引导学生亲自经历“推

7、广”的过程,在“推广”的过程中理解整数乘法运算定律对于小数乘法也适用,使学生明确,现在乘法运算定律中数的适用范围不但包括整数,也包括小数。(2)在教学应用乘法运算定律实行小数的简便计算时,教师要重视培养学生思维的逻辑性,着重引导学生交流简便计算的思维顺序,根据算式的结构和数据的特点怎样算比较简便?第一步应该怎样将算式变换?应用的是哪一条运算定律?第二步又该怎样做?(3)应用乘法分配律进行简便计算是学生容易出错的地方,教师要注意分析学生出错的原因,加强就题说理练习。在乘法分配律的应用中,既有乘法分配律的正向应用,也有乘法分配律的逆向应用。因此,要适当进行乘法分配律算式结构的正向和逆向的变换训练,

8、提高学生应用乘法分配律解决问题的能力。6.根据实际问题和数据选择适当的估算策略突破建议:(1)关注估算思路,注重方法指导。在教学过程中,引导学生完整地叙述自己的估算思路,教师组织学生及时反思“这样估算行吗”“这样估算有什么好处”“有什么需要改进的地方”等问题,及时有效地对学生的估算思路进行指导。(2)加强对比沟通,体会策略多样。在教学过程中,由于学生生活经验不同,会产生不同的估算方法,教师要主动对典型估算方法进行展示,引导学生体会估算方法的多样性。与此同时,还需要加强不同估算方法之间的对比沟通,如“这两种估算方法的相同点和不同点是什么”,从而让学生体会估算的本质就是“近似计算”,根据具体数据和

9、实际问题选择不同的处理方法,就会产生不同的估算策略。7.引导学生对分段计费问题的规律进行探寻(1)要重视引导学生理解题意,尤其是对“收费标准”的理解,因为它直接关系到如何根据里程确定怎样分段。教学中,教师可以设计如下问题:“3 km以内7元”是什么意思?从什么时候开始按每千米1.5元收费?假如行驶了3.1 km,应付车费多少元?行驶3.1 km和行驶4 km,应付的车费同样多吗?为什么?通过这些理解性的问题帮助学生明确收费标准。(2)在完成了例题的“分析与解答”后,教师可沿用例题情境进行适当的变式练习,如:如果行驶的里程是8.4 km,你们还能用刚才的方法计算出车费吗?如果行驶的里程是9.8 km呢?让学生通过算式的对比,发现“分段计费”的方法都是用7元加后段里程车费,用“先假设再调整”的方法都是用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论