![gksxnd05难点05求解函数解析式_第1页](http://file1.renrendoc.com/fileroot_temp2/2021-2/18/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec8/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec81.gif)
![gksxnd05难点05求解函数解析式_第2页](http://file1.renrendoc.com/fileroot_temp2/2021-2/18/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec8/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec82.gif)
![gksxnd05难点05求解函数解析式_第3页](http://file1.renrendoc.com/fileroot_temp2/2021-2/18/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec8/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec83.gif)
![gksxnd05难点05求解函数解析式_第4页](http://file1.renrendoc.com/fileroot_temp2/2021-2/18/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec8/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec84.gif)
![gksxnd05难点05求解函数解析式_第5页](http://file1.renrendoc.com/fileroot_temp2/2021-2/18/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec8/4f0eeff5-2b34-48a4-b2cb-d9a567a78ec85.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、难点5 求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.难点磁场()已知f(2cosx)=cos2x+cosx,求f(x1).案例探究例1(1)已知函数f(x)满足f(logax)= (其中a0,a1,x0),求f(x)的表达式.(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(1)|=|f(0)|=1,求f(x)的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属题目.知识依
2、托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=logax(a1,t0;0a1,t1,x0;0a1,x0)(2)由f(1)=a+b+c,f(1)=ab+c,f(0)=c得并且f(1)、f(1)、f(0)不能同时等于1或1,所以所求函数为:f(x)=2x21或f(x)=2x2+1或f(x)=x2x+1或f(x)=x2x1或f(x)=x2+x+1或f(x)=x2+x1.例2设f(x)为定义在R上的偶函数,当x1时,y=f(x)的图象是经过点(2,0
3、),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属题目.知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x1时,设f(x)=x+b射线过点(2,0).0=2+b即b=2,f(x)=x+2.(
4、2)当1x1时f(x)等于( )A.f(x)=(x+3)21B.f(x)=(x3)21C.f(x)=(x3)2+1D.f(x)=(x1)21二、填空题3.()已知f(x)+2f()=3x,求f(x)的解析式为_.4.()已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_.三、解答题5.()设二次函数f(x)满足f(x2)=f(x2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.()设f(x)是在(,+)上以4为周期的函数,且f(x)是偶函数,在区间2,3上时,f(x)=2(x3)2+4,求当x1,2时f(x)的解析式.
5、若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0x2)的图象上,求这个矩形面积的最大值.7.()动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,g(x)表示ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.()已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(1x1)是奇函数,又知y=f(x)在0,1上是一次函数,在1,4上是二次函数,且在x=2时,函数取得最小值,最小值为5.(1)证明:f(1)+f(4)=0;(2)试求y=f(x),x1,4的解析式;(3)试求y=f(x)在
6、4,9上的解析式.参考答案难点磁场解法一:(换元法)f(2cosx)=cos2xcosx=2cos2xcosx1令u=2cosx(1u3),则cosx=2uf(2cosx)=f(u)=2(2u)2(2u)1=2u27u+5(1u3)f(x1)=2(x1)27(x1)+5=2x211x+4(2x4)解法二:(配凑法)f(2cosx)=2cos2xcosx1=2(2cosx)27(2cosx)+5f(x)=2x27x5(1x3),即f(x1)=2(x1)27(x1)+5=2x211x+14(2x4).歼灭难点训练一、1.解析:f(x)=.ff(x)=x,整理比较系数得m=3.答案:A2.解析:利用
7、数形结合,x1时,f(x)=(x+1)21的对称轴为x=1,最小值为1,又y=f(x)关于x=1对称,故在x1上,f(x)的对称轴为x=3且最小值为1.答案:B二、3.解析:由f(x)+2f()=3x知f()+2f(x)=3.由上面两式联立消去f()可得f(x)=x.答案:f(x)= x4.解析:f(x)=ax2+bx+c,f(0)=0,可知c=0.又f(x+1)=f(x)+x+1,a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1.故2a+b=b+1且a+b=1,解得a=,b=,f(x)=x2+x.答案:x2+x三、5.解:利用待定系数法,设f(x
8、)=ax2+bx+c,然后找关于a、b、c的方程组求解,f(x)=.6.解:(1)设x1,2,则4x2,3,f(x)是偶函数,f(x)=f(x),又因为4是f(x)的周期,f(x)=f(x)=f(4x)=2(x1)2+4.(2)设x0,1,则2x+23,f(x)=f(x+2)=2(x1)2+4,又由(1)可知x0,2时,f(x)=2(x1)2+4,设A、B坐标分别为(1t,0),(1+t,0)(0t1,则|AB|=2t,|AD|=2t2+4,S矩形=2t(2t2+4)=4t(2t2),令S矩=S,=2t2(2t2)(2t2)()3=,当且仅当2t2=2t2,即t=时取等号.S2即S,Smax=
9、.7.解:(1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由RtABD可得PA=;当P点在CD上运动时,由RtADP易得PA=;当P点在DA上运动时,PA=4x,故f(x)的表达式为:f(x)=(2)由于P点在折线ABCD上不同位置时,ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解.如原题图,当P在线段AB上时,ABP的面积S=0;当P在BC上时,即1x2时,SABP=ABBP=(x1);当P在CD上时,即2x3时,SABP=11=;当P在DA上时,即3x4时,SABP=(4x).故g(x)=8.(1)证明:y=f(x)是以5为周期的周期函数,f(4)=f(45)=f(1),又y=f(x)(1x1)是奇函数,f(1)=f(1)=f(4),f(1)+f(4)=0.(2)解:当x1,4时,由题意,可设f(x)=a(x2)25(a0),由f(1)+f(4)=0得a(12)25+a(42)25=0,解得a=2,f(x)=2(x2)25(1x4).(3)解:y=f(x)(1x1)是奇函数,f(0)=f(0),f(0)=0,又y=f(x) (0x1)是一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国体育赛事网络直播行业市场现状、前景分析研究报告(智研咨询发布)
- 光纤光学课件第一章
- 赠送2025年度转让合同模板9篇
- 疼痛-疾病、创伤等引起的难受的感觉课件
- 染色体结构课件
- 二零二五版退股协议范本:股东股权退出法律文件汇编
- Unit 6 Have you got any homework Lesson3 Reading part5【知识精研】KET剑桥英语
- 《姚森敬总则及章节》课件
- 《放大电路基础》课件
- 《维克多·雨果》课件
- 陕西省西安市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 国家基本医疗保险和工伤保险药品目录(2004年版)
- 文学类文本阅读(理解赏析类)-2025年北京高考语文一轮总复习(原卷版)
- 北京某中学2024-2025学年九年级上学期开学考数学试卷
- Unit 5 Section B(2a-2c)教学设计2023-2024学年人教版七年级英语下册
- 三下 第11课 《在线学习工具》教案 浙教版2023信息科技
- 2024年高考真题-英语(新高考Ⅱ卷) 含解析
- 【万通地产偿债能力存在的问题及优化建议(数据论文)11000字】
- 吉利收购沃尔沃商务谈判案例分析
- JGJ/T235-2011建筑外墙防水工程技术规程
- 人教版PEP五年级英语下册单词表与单词字帖 手写体可打印
评论
0/150
提交评论