版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章常用逻辑用语,11.2四种命题 11.3四种命题间的相互关系,1.了解命题的逆命题、否命题与逆否命题 2会分析四种命题间的相互关系,新 知 视 界 1四种命题 (1)一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题其中一个命题叫做原命题,另一个命题叫做原命题的逆命题也就是说,如果原命题为“若p,则q”,那么它的逆命题为“若q,则p,2)对于两个命题,其中一个命题的条件和结论恰好为另一个命题的条件的否定和结论的否定,把这样的两个命题叫做互否命题如果把其中的一个命题叫做原命题,那么另一个命题叫做原命题的否命题也就是说,如果原命题
2、为“若p,则q”,那么它的否命题为“若綈p,则綈q,3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题,其中一个命题叫做原命题,则另一个命题叫做原命题的逆否命题也就是说,如果原命题为“若p,则q”,那么它的逆否命题是“若綈q,则綈p,2(1)四种命题间的相互关系,2)一般地,四种命题的真假性,有且仅有下面四种情况,尝 试 应 用 1若xy,则x2y2的否命题是() A若xy,则x2y2 B若xy, 则x2y2 C若xy,则x2y2 D若xy, 则x2y2 答案:C,2命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角
3、线相等的四边形”的() A逆命题 B否命题 C逆否命题 D无关命题 答案:A,3命题“若ab0,则a0”与命题“若a0,则ab0”是_命题 解析:两个命题的条件和结论交换了,满足互逆命题的概念 答案:互逆,4命题“若,则sinsin”的等价命题是_ 答案:若sinsin,则,5把命题“当x2时,x23x20”写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假 解:原命题:若x2,则x23x20,真命题 逆命题:若x23x20,则x2,假命题 否命题:若x2,则x23x20,假命题 逆否命题:若x23x20,则x2,真命题,典 例 精 析 类型一四种命题之间的转换 例
4、1写出下列命题的逆命题、否命题和逆否命题 (1)垂直于同一平面的两直线平行 (2)若mn0,则方程mx2xn0有实数根,分析由题目可以获取以下主要信息: 第一个命题的条件是垂直于同一平面的两条直线,结论是两直线平行; 第二个命题的条件和结论非常清楚 解答本题时可先分清命题的条件和结论,写成“若p,则q”形式,再写出逆命题、否命题和逆否命题,解(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面 否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行 逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面,2)逆命题:若方程mx2xn0有实数根,则mn0. 否命题:若mn0,
5、则方程mx2xn0没有实数根 逆否命题:若方程mx2xn0没有实数根,则mn0,点评(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题 (2)另外在写命题时,为了使句子更通顺,可以适当的添加一些词语,但不能改变条件和结论,迁移体验1写出下列命题的逆命题、否命题和逆否命题 (1)直角等于90. (2)若m0,n0,则mn0,解:(1)原命题:若一个角是直角,则它等于90. 逆命题:若一个角等于90,则它是直角 否命题:若一个角不是直角,则它不等于90. 逆否命题:若一个角不等于90,则它不是直角 (2)逆命题:若mn0,则
6、m0且n0. 否命题:若m0或n0,则mn0. 逆否命题:若mn0,则m0或n0,类型二四种命题真假判断 例2写出下列命题的逆命题、否命题、逆否命题,并判断其真假: (1)实数的平方是非负数; (2)等底等高的两个三角形是全等三角形; (3)弦的垂直平分线经过圆心,并平分弦所对的弧 分析分清条件和结论利用相关知识点判断真假,解(1)逆命题:若一个数的平方是非负数,则这个数是实数真命题 否命题:若一个数不是实数,则它的平方不是非负数真命题 逆否命题:若一个数的平方不是非负数,则这个数不是实数真命题,2)逆命题:若两个三角形全等,则这两个三角形等底等高真命题 否命题:若两个三角形不等底或不等高,则
7、这两个三角形不全等真命题 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高假命题,3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线真命题 否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧真命题 逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线真命题,点评分清条件和结论,即可容易的写出各种命题判断一个命题为假,只需举出一个反例,充分发挥原命题与逆否命题、逆命题与否命题的等价性,可大大简化判断过程,迁移体验2写出下列命题的逆命题、否命题和逆否命题并判断其真假: (1)若x3或x7,则(x3)(x7)0;
8、(2)若a、b都是奇数,则ab必是奇数,解:(1)逆命题:若(x3)(x7)0,则x3或x7;(真) 否命题:若x3且x7,则(x3)(x7)0;(真) 逆否命题:若(x3)(x7)0,则x3且x7.(真) (2)逆命题:若ab是奇数,则a、b都是奇数;(真) 否命题:若a、b不都是奇数,则ab不是奇数;(真) 逆否命题:若ab不是奇数,则a、b不都是奇数(真,类型三四种命题的相互关系 例3若命题p的否命题是q,命题q的逆命题是r,则r是p的逆命题的() A原命题B逆命题 C否命题 D逆否命题,分析由题目可获取以下主要信息: p与q互为否命题; q与r互为逆命题 解答本题可利用四种命题之间的关
9、系来寻找,解析设命题p为“若k,则s”;则其否命题q是“若綈k,则綈s”;则命题q的逆命题r是“若綈s,则綈k”,而p的逆命题为“若s,则k”,故r是p的逆命题的否命题 答案C,点评(1)四种命题的结构分别为: 原命题:若p,则q;逆命题:若q,则p; 否命题:若綈p,则綈q;逆否命题:若綈q,则綈p,2)在四种命题中,原命题和逆命题,否命题和逆否命题互为逆命题;原命题和否命题,逆命题和逆否命题互为否命题;原命题和逆否命题,否命题和逆命题互为逆否命题 (3)解决此类问题应正确区分好四种命题之间的关系,迁移体验3(1)与命题“若mM,则nM”等价的命题是() A若mM,则nM B若nM,则mM
10、C若mM,则nM D若nM,则mM (2)给出命题:“已知a,b,c,d是实数,若ab,cd,则acbd”,对其原命题、逆命题、否命题、逆否命题而言,真命题的个数是(,A0 B2 C3 D4 解析:(1)原命题与逆否命题等价 (2)因为原命题为真,逆命题为假 答案:(1)D(2)B,类型四等价命题的应用 例4判断命题“已知a,x为实数,若关于x的不等式x2(2a1)xa220的解集非空,则a1”的逆否命题的真假,分析由题目可以获取以下主要信息: 所给命题涉及到一元二次不等式的解集; 判断逆否命题的真假 解答本题可先根据已知的命题利用判别式求出a的范围,再去判断命题的真假,解方法1:原命题的逆否
11、命题: 已知a,x为实数,若a1, 则关于x的不等式x2(2a1)xa220的解集为空集判断真假如下: 抛物线yx2(2a1)xa22开口向上, 判别式(2a1)24(a22)4a7,因为a1,所以4a70. 即抛物线yx2(2a1)xa22与x轴无交点 所以关于x的不等式x2(2a1)xa220的解集为空集 故原命题的逆否命题为真,q:Ba|a1 因为AB,所以“若p,则q”为真 所以“若p,则q”的逆否命题“若綈q,则綈p”为真 即原命题的逆否命题为真,点评命题的问题可以和其他很多知识相结合,例如本题就是一道有关集合,不等式的解集,二次函数的图象,四种命题的关系的综合题,要求对这几方面的内
12、容非常熟练,且要有一定的分析推理能力,通过一题多解,培养发展创新的能力,迁移体验4判断命题“若m0,则方程x22x3m0有实数根”的逆否命题的真假 解:m0,12m0,12m40. 方程x22x3m0的判别式12m40. 原命题“若m0,则方程x22x3m0有实数根”为真 又因原命题与它的逆否命题等价,所以“若m0,则方程x22x3m0有实数根”的逆否命题也为真,思 悟 升 华 1正确写出原命题的逆命题、否命题和逆否命题 (1)一般地,用p和q分别表示原命题的条件和结论,用綈p和綈q分别表示p和q的否定,因此,若原命题为:若p,则q,则其逆命题为:若q,则p;否命题为:若綈p,则綈q;逆否命题
13、为:若綈q,则綈p,为便于书写各种命题,当原命题不是“若p,则q”的形式时,应先将命题写成规范形式“若p,则q”,然后再进行书写其他三种命题 (2)在将一个命题改写为“若p,则q”的形式时,写法不是惟一的 如:命题“负数的平方是正数”可写成“若一个数是负数,则它的平方是正数”,其对应的逆命题、否命题、逆否命题分别为,逆命题:若一个数的平方是正数,则它是负数; 否命题:若一个数不是负数,则它的平方不是正数; 逆否命题:若一个数的平方不是正数,则它不是负数 也可写成“若一个数是负数的平方,则这个数是正数”,则其对应的逆命题、否命题、逆否命题相应变为,逆命题:若一个数是正数,则它是负数的平方; 否命题:若一个数不是负数的平方,则这个数不是正数; 逆否命题:若一个数不是正数,则它不是负数的平方 2四种命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国按钮型开关门锁数据监测研究报告
- 2025年中国瓦松栓市场调查研究报告
- 中小企业用工合同范文(2024版)
- 二零二五年度承台施工绿色施工技术规范合同3篇
- 2025年度电梯IC卡管理系统远程监控与数据分析合同4篇
- 2025年高校后勤集团食堂承包合作协议3篇
- 2025年度新型环保材料门牌生产与安装合同书4篇
- 2025年中国冷轧不锈管行业市场发展前景及发展趋势与投资战略研究报告
- 2025年度出租车经营权许可及车辆更新置换协议3篇
- 二零二五年度厨师餐饮市场调研聘用合同范本3篇
- 广东省佛山市2025届高三高中教学质量检测 (一)化学试题(含答案)
- 人教版【初中数学】知识点总结-全面+九年级上册数学全册教案
- 四川省成都市青羊区成都市石室联合中学2023-2024学年七上期末数学试题(解析版)
- 2024-2025学年人教版七年级英语上册各单元重点句子
- 2025新人教版英语七年级下单词表
- 公司结算资金管理制度
- 2024年小学语文教师基本功测试卷(有答案)
- 未成年入职免责协议书
- 项目可行性研究报告评估咨询管理服务方案1
- 5岁幼儿数学练习题
- 2024年全国体育单招英语考卷和答案
评论
0/150
提交评论