第二单元,圆柱和圆锥_第1页
第二单元,圆柱和圆锥_第2页
第二单元,圆柱和圆锥_第3页
第二单元,圆柱和圆锥_第4页
第二单元,圆柱和圆锥_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学试卷圆柱和圆锥的认识教学内容:教科书第 1820页的例1, “练一练”和练习五的 14题教学目标:1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的 底面、侧面和高。2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。教学重点:掌握圆柱、圆锥的特征教学难点:知道平面图形和立体图形之间的关系,认识立体图教学准备:多媒体教学过程:一、导入新课出示例1场景图,上面这些物体认识吗?分别是什么?如果将它们按形状分成两类,怎么分?如果给这两类物体起个名字,可以叫什么?学生交流(揭示课题:圆柱和圆锥)二、探究圆柱和圆锥的特征1、研究圆柱生活中还有

2、哪些物体的形状是圆柱形的?出示相关圆柱形实物和模型引导观察:仔细观察这些圆柱,你能发现什么?在小组中交流自己的发现。组织全班交流,教师适当板书:上下一样粗细有两个圆面 一个曲面认识圆柱各部分的名称:教师先对照圆柱的直观模型介绍圆柱的底面、侧面和高,再让学生在实物模型上找到圆柱的底面、侧面和高。2、研究圆锥 生活中还见过哪些圆锥形状的物体?仔细观察圆锥,你能发现什么?在小组中说一说。全班交流,教师相机板书:有一个顶点底面是圆形侧面是一个曲面认识圆锥的高出示圆锥的透视图,让学生认识圆锥的高。在圆锥的实物模型中,相互说说圆锥的顶点、底面、侧面和高。三、巩固练习1、讨论“练一练”。交流挑选的理由和不挑

3、选的理由。2、做练习五第2题。引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?在书中连线。3、做练习五第3题。出示长方形、直角三角形和半圆形的小旗,引导学生猜想:如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?让学生旋转小旗,看猜想是否正确。如果让你自己设计一个小旗,你想将小旗设计成什么样子的?想想一下,如果也这样旋转一周,会转成什么形状?自己做一做。四、小结通过本节课的学习,你学会了什么?学生交流五、作业完成练习与测试相关作业板书设计圆柱和圆锥的认识圆柱的表面积(1)教学内容:教科书第 2122页的例2、例3,完成相应的“练一练”和练习六第1、2题教学目标:1、使

4、学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.2、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。3、让学生进一步增强数学在生活中的体验,培养热爱数学、学好学生的兴趣。教学重点:理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法.教学难点:根据实际情况来计算圆柱的表面积。教学准备:圆柱形状的罐头,外面有可以展开的商标纸。教学过程:一、教学例11、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。问:你能想办法算出这张商标纸的面积吗?拿出圆柱形的罐头,量出相关数据,在小组中讨论。交流:你们是怎么算的?沿高展开,得到一个长方形商标纸,量出它的长

5、和宽,再算出它的面积。讨论:商标纸的面积就是圆柱中哪个面的面积?观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。2、出示例1中的罐头。师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?出示数据:底面直径 11厘米 高:15厘米学生算出商标纸的面积。交流:你是怎么算的?先算什么?再算什么?如果知道的是底面半径,怎么算呢?3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。追问:怎么算圆柱的侧面积?根据学生回答板书:圆柱侧面积=底面周长x高4、练习:完成“练一练”第 1题

6、。二、教学例31、出示例3中的圆柱。问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?让学生算一算后交流。师板书:长:3.14 X 2=6.28 (厘米)宽:2厘米圆柱的两个底面的直径和半径分别是多少厘米?板书:直径2厘米 半径1厘米2、引导画出圆柱的展开图。这个圆柱有几个面?分别是什么?如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?在书上方格纸上画出这个圆柱的展开图。交流:你是怎么画的?3、认识圆柱的表面积。讨论:什么是圆柱的表面?怎么算圆柱的表面积?板书:圆柱的表面积 =底面圆的面积X 2+圆柱侧面积算出这个圆柱的表面积。算后交流,提醒学生分步计算。4、练习:完成

7、“练一练”第 2题。各自练习,并指名板演。对照板演,讨论:这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?想一想:如果知道的是圆的周长呢?三、小结这节课我们学习了什么?(板书:圆柱的表面积)怎样求圆柱的表面积?怎么算圆柱的侧面积?四、作业完成练习与测试相关作业板书设计圆柱的表面积圆柱的表面积教学内容:练习六第 39题。教学目标:1、 使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱 表面积计算的实际问题。2、在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。3、让学生进一步密切数学与生活中联系,能够初步学以致用。教学

8、重点:能根据实际生活情况解决有关圆柱表面积计算的实际问题。教学难点: 灵活运用所学知识解决实际问题的能力。教学准备:与练习六中的练习相关的图片。教学过程:一、复习引入1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问 题的解决,来加深对圆柱表面积的认识。二、基本练习1、出示练习六第 3题,理解表格意思。2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?各自计算,算后填写在书中表格里,再交流方法和得数。3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积

9、和表面积?各自计算,算后填写在书中表格里,再交流方法和得数。4、 如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、 底面积和表面积?各自计算,算后交流方法和得数。三、巩固练习1、完成练习六第4题。讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?各自练习后交流算法。2、完成练习六第5题。讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?各自练习后交流算法和结果。3、讨论练习六第 7题。出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?看看,这个博士帽是怎么做成的,包括哪几个部分?10出示条件:这个博士帽上面是边长30厘

10、米的正方形,下面的底面直径16厘米,厘米的圆柱。你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?各自计算,算后交流算法和结果。如果要做10顶呢?怎么算?3、讨论练习六第 8题。出示题目,让学生读题,理解题目意思。讨论:塑料花分布在这个花柱的哪几个面上?要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?算出上面和侧面的面积后,怎么算?为什么?4、讨论解答练习六第 9题。出示题目,读题,理解题目意思。尝试列式。交流算法:这题先算什么?再算什么?最后算什么?怎么算一根柱子的侧面积的?为什么不要算底面积?四、小结通过本节课的学习,你学会了什么?学生交流五、作业完成练习与测试相关作

11、业 板书设计圆柱的表面积圆柱的体积教学内容:教科书第 2526页的例4、“试一试”、“练一练”。教学目标:使学生经历观察、猜想、操作、验证、交流和归纳等数学活动的过程,探索并掌握圆柱的体 积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。教学重点:掌握和运用圆柱体积计算公式教学难点:圆柱体积公式的推导过程教学准备:多媒体教学过程:一、复习引入1、呈现例4中长方体、正方体和圆柱的直观图。2、提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱的体积怎么算?

12、3、引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。二、教学例41、观察比较引导学生观察例4的三个立体,提问:这三个立体的底面积和高都相等,它们的体积有什么关系?长方体和正方体的体积一定相等吗?为什么?圆柱的体积与长方体和正方体的体积可能相等吗?为什么?2、实验操作谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。讨论交

13、流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?操作教具,让学生观察。引导想像:如果把底面平均分的份数越来越多,结果会怎么样?课件演示,使学生清楚地认识到:拼成的立体会越来越接近长方体。3、推出公式提问:拼成的长方体与原来的圆柱有什么关系?指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等 于圆柱的高。想一想:怎样求圆柱的体积?为什么?根据学生的回答小结并板书圆柱的体积公式:圆柱的体积=底面积x高引导用字母公式表示圆柱的体积公式:V=sh三、教学“试一试”让学生列式解答后交流算法。讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?四、巩固练

14、习1、做“练一练”第1题。说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?各自练习,并指名板演。对照板演,说说计算过程。2、做“练一练”第 2题。说说为什么要从里面量?如果从外面量算出的是什么?五、小结这节课我们学习了什么?有哪些收获?还有什么疑问?学生交流六、作业完成练习与测试相关作业板书设计圆柱的体积圆柱的体积教学内容:完成练习七第 15题。教学目标: 通过练习,巩固圆柱的体积公式。让学生在解决简单的实际问题的过程中,进一步理解和掌握圆柱的体积公式。教学重点:熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积教学难点:根据实际情况灵活计算教学准备:多媒体教学过程:一、复习1

15、、圆柱的体积公式是什么?2、我们是怎么推导出圆柱的体积公式的?3、知道哪些条件,我们就能算出圆柱的体积?二、基本练习1、做练习七第1题。各自算了填在书上,然后校对。2、算出下面各圆柱的体积。底面积0.8平方米,高1.2米半径5厘米,高15厘米直径6分米,高8分米练习并指名板演,然后对照板演说说每题的计算过程。三、讨论实际问题1、讨论练习七第 2题。猜猜看,哪个杯子里的饮料最多?算一算,看到底是哪个杯子里的饮料多?2、讨论练习七第 3题。怎么知道这个保温茶桶能不能盛150千克的水呢?3、讨论练习七第 4题:怎么算一枚硬币的体积?4、出示一个圆柱形茶杯,讨论:要知道它的容积,需要量出什么数据,怎么

16、量?四、小结通过本节课的学习,你学会了什么?交流五、作业完成练习与测试 相关作业板书设计圆柱的体积教学内容:完成练习七的第69题和思考题。教学目标:提高学生应用公式解决实际问题的能力,帮助学生在具体的情境中进一步感受所学知识的应用价值。教学重点:进一步培养学生的空间想像能力。教学难点:和综合应用数学知识解决实际问题的能力。教学准备:多媒体教学过程:一、基本练习1、求下面各圆柱的体积底面积0.6平方米,高0.5米半径4厘米,高12厘米直径5分米,高6分米2、做练习七第6题。各自练习。交流:怎么算这个油桶的容积?要注意什么?提醒学生要看清单位。怎么算这个油桶能装柴油多少千克?为什么?二、综合练习1

17、、讨论练习七第 7题。出示题目,理解题目意思。先求什么?再小组中讨论:要求一年里每个人大约要比原来多用去多少立方厘米的牙膏, 求什么?然后求什么?说说怎样算一天里,每个人大约比原来多用多少立方厘米的牙膏?2、讨论练习七第 9题。出示题目,理解题目意思。讨论:塑料薄膜的面积相当于什么?大棚内的空间相当于什么?分别怎么算?三、讨论思考题把圆钢竖着拉出水面 8厘米,水面下降4厘米,你能想到什么?全部浸入,水面上升 9厘米,你又能想到什么?怎么算出这个圆钢的体积?四、小结通过本节课的学习,你学会了什么?学生交流五、作业完成练习与测试相关作业 板书设计圆柱的体积圆锥的体积教学内容:教科书第 29页例5及

18、相应的和“试一试”,“练一练”和练习八的第 13题。 教学目标:L、使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。2、使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。3、培养学生初步的空间观念和发展学生的思维能力。教学重点:通过转化的思想理解和掌握圆锥体积的计算公式。教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。1教具准备:演示测高、 等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的-的3教具。教学过程:一、复习引新1. 说出圆柱的体积计算公式。2. 我们已经学过了长方体、 正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中, 我们还常

19、常看到下面一些物体 (出示教材第13页插图)。这些物体的形状都是圆锥体,简称 圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板 书课题)二、教学新课 1、认识圆锥。 我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?2、根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。3、利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?4、教学圆锥高的测

20、量方法。5、让学生根据上述方法测量自制圆锥的高。6、实验操作、推导圆锥体积计算公式。(1) 通过演示使学生知道什么叫等底等高。(具体方法可见教材第 29页上面的图)(2) 让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?(3) 实验操作,发现规律。在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒 的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与1它等底等高的圆柱体体积的-。3老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?(4) 是不是所有的圆柱和圆锥都有这样的关

21、系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的1。3(5)启发引导推导出计算公式并用字母表示。1圆锥的体积-等底等咼的圆柱的体积X-底面积X咼X1用字母表示1:V- Sh333(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么1乘以?37、教学试一试(1)出示题目(2) 审题后可让学生根据圆锥体积计算公式自己试做。(3) 批改讲评。注意些什么问题。三、巩固练习1、做“练一练”第1、2题。1指名一人板演,其余学生做在练习本上。集体订正,强调要乘以32、做练习八第1、2题。学生做在课本上。小黑板出示,指名口答,老师板书。错的

22、要求说明理由。3、做练习八第 3题。让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。四、小结这节课你学习了什么内容 ?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?学生交流五、作业完成练习与测试相关作业板书设计圆锥的体积1V=3sh圆锥体的体积教学内容:完成练习八的第410题。教学目标:1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地 计算圆锥的体积。2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。3、进一步培养学生将所学知识运用和服务于生活的能力。教学重点:灵活运用圆柱圆锥的有关知识解决实际问题。教学难点:灵活运用圆

23、柱圆锥的有关知识解决实际问题。教学准备:多媒体教学过程:一、导入1. 圆锥体的体积公式是什么?我们是如何推导的?2. 圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。(1 )一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。(2) 一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。(3) 一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。3. 求下列圆锥体的体积。(1 )底面半径4厘米,高6厘米。(2)底面直径6分米,高8厘米。(3)底面周长31.4厘米.高12厘米。4. 教师根据学生练习

24、中存在的问题,集体评讲。二、巩固拓展1、拓展练习:(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?(2) 一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?2、完成31页第5题。讨论下列问题:(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?3、 分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的 2倍,圆柱和圆锥的 体积之间有什么倍数关系?4、展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积

25、。5、教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。6、讨论练习八蒙古包所占空间的大小的方法。蒙古包是由哪几个部分组成的?上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?同学们能独立地求出蒙古包所占的空间的大小吗?学生完成。三、小结通过本节课的学习,你学会了什么?交流四、作业完成练习与测试相关作业板书设计圆锥体的体积整理与练习教学内容:完成“练习与应用”的第15题。教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合, 构建体积计算公式系统,形成牢固的知识网络。2、熟练地运用公式进行计算,让学生感受数学与

26、生活的联系。3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能 力。教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。教学难点:灵活地运用相关知识解决实际问题。教学准备:多媒体教学过程:一、导入1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知 识向大家展示一下。2、圆柱和圆锥有什么特征?请同学们完整地表述一下。3、强化公式的推导过程。圆柱体体积公式是什么?请说一说它的转化和推导过程。圆锥体体积公式是什么?说一说它的转化和推导过程?4、根据学生的复习整理,让学生把下表填写完整。图形特征计算公式圆柱1、上下粗细一样2、底面

27、是两个相等的圆3、侧面是一个曲面,沿高展开S 底=n rS 侧=ch=n dh=2 n rhS底=2s底+s侧V 柱=sh=n r h曰 是-个长方形或正方形圆锥1、有一个顶点2、底面是一个圆3、侧面是一个曲面,沿母线展开是一个扇形S 底=n rV 锥=1/3sh=1/3 n r h5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆 锥的体积公式能解决哪些问题?根据学生的讨论得出:(1)根据圆柱和圆锥的特征判断圆柱和圆锥。(2 )针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。二、巩固练习1、相关

28、概念分得清。(1)把圆柱的侧面沿高展开后通常得到一个(),这个长方形的长就是圆柱的(),这个长方形的宽就是圆柱的 ( ),这个长方形的面积就是圆柱的 (),所以圆柱的侧面积等于 ()。当圆柱的()和()相等时,圆柱的侧面展开后是一个正方形。2、有关计算算得准。(1 )完成填表学生独立完成,师生集体评议。(2) 完成第2题学生交流、分析(3) 完成第3、4、5题学生思考分析,共同交流三、小结通过本节课的学习,你学会了什么?交流四、作业完成练习与测试 相关作业板书设计整理与练习整理与练习教学内容:完成“练习与应用”的第6、7题,“拓展与实践”,“评价反思”等。教学目标:1、使学生系统地掌握长方体、正方体、圆柱体、圆锥体的体积公式,理解这些 体积公式之间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论