版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Clustering,Overview,Partitioning Methods K-Means Sequential Leader Model Based Methods Density Based Methods Hierarchical Methods,2,What is cluster analysis,Finding groups of objects Objects similar to each other are in the same group. Objects are different from those in other groups. Unsupervised L
2、earning No labels Data driven,3,Clusters,4,Inter-Cluster,Intra-Cluster,Clusters,5,Applications of Clustering,Marketing Finding groups of customers with similar behaviours. Biology Finding groups of animals or plants with similar features. Bioinformatics Clustering microarray data, genes and sequence
3、s. Earthquake Studies Clustering observed earthquake epicenters to identify dangerous zones. WWW Clustering weblog data to discover groups of similar access patterns. Social Networks Discovering groups of individuals with close friendships internally,6,Earthquakes,7,Image Segmentation,8,The Big Pict
4、ure,9,Requirements,Scalability Ability to deal with different types of attributes Ability to discover clusters with arbitrary shape Minimum requirements for domain knowledge Ability to deal with noise and outliers Insensitivity to order of input records Incorporation of user-defined constraints Inte
5、rpretability and usability,10,Practical Considerations,11,Scaling matters,Normalization or Not,12,13,Evaluation,14,VS,Evaluation,15,Silhouette,A method of interpretation and validation of clusters of data. A succinct graphical representation of how well each data point lies within its cluster compar
6、ed to other clusters. a(i): average dissimilarity of i with all other points in the same cluster b(i): the lowest average dissimilarity of i to other clusters,16,Silhouette,17,K-Means,18,K-Means,19,K-Means,20,K-Means,Determine the value of K. Choose K cluster centres randomly. Each data point is ass
7、igned to its closest centroid. Use the mean of each cluster to update each centroid. Repeat until no more new assignment. Return the K centroids. Reference J. MacQueen (1967): Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on Math
8、ematical Statistics and Probability, vol.1, pp. 281-297,21,Comments on K-Means,Pros Simple and works well for regular disjoint clusters. Converges relatively fast. Relatively efficient and scalable O(tkn) t: iteration; k: number of centroids; n: number of data points Cons Need to specify the value o
9、f K in advance. Difficult and domain knowledge may help. May converge to local optima. In practice, try different initial centroids. May be sensitive to noisy data and outliers. Mean of data points Not suitable for clusters of Non-convex shapes,22,The Influence of Initial Centroids,23,The Influence
10、of Initial Centroids,24,Sequential Leader Clustering,A very efficient clustering algorithm. No iteration A single pass of the data No need to specify K in advance. Choose a cluster threshold value. For every new data point: Compute the distance between the new data point and every clusters centre. I
11、f the minimum distance is smaller than the chosen threshold, assign the new data point to the corresponding cluster and re-compute cluster centre. Otherwise, create a new cluster with the new data point as its centre. Clustering results may be influenced by the sequence of data points,25,26,Gaussian
12、 Mixture,27,Clustering by Mixture Models,28,K-Means Revisited,29,model parameters,latent parameters,Expectation Maximization,30,31,EM: Gaussian Mixture,32,33,Density Based Methods,Generate clusters of arbitrary shapes. Robust against noise. No K value required in advance. Somewhat similar to human v
13、ision,34,DBSCAN,Density-Based Spatial Clustering of Applications with Noise Density: number of points within a specified radius Core Point: points with high density Border Point: points with low density but in the neighbourhood of a core point Noise Point: neither a core point nor a border point,35,
14、Core Point,Noise Point,Border Point,DBSCAN,36,p,q,directly density reachable,p,q,density reachable,o,q,p,density connected,DBSCAN,A cluster is defined as the maximal set of density connected points. Start from a randomly selected unseen point P. If P is a core point, build a cluster by gradually add
15、ing all points that are density reachable to the current point set. Noise points are discarded (unlabelled,37,Hierarchical Clustering,Produce a set of nested tree-like clusters. Can be visualized as a dendrogram. Clustering is obtained by cutting at desired level. No need to specify K in advance. Ma
16、y correspond to meaningful taxonomies,38,Agglomerative Methods,Bottom-up Method Assign each data point to a cluster. Calculate the proximity matrix. Merge the pair of closest clusters. Repeat until only a single cluster remains. How to calculate the distance between clusters? Single Link Minimum dis
17、tance between points Complete Link Maximum distance between points,39,Example,40,Single Link,Example,41,Example,42,Min vs. Max,43,3,6,5,2,1,4,A,B,C,D,E,MIN,A,B,C,D,E,MAX,Reading Materials,Text Books R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Chapter 10, 2nd Edition, John Wiley &
18、 Sons. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Chapter 8, Morgan Kaufmann. Survey Papers A. K. Jain, M. N. Murty and P. J. Flynn (1999) “Data Clustering: A Review”, ACM Computing Surveys, Vol. 31(3), pp. 264-323. R. Xu and D. Wunsch (2005) “Survey of Clustering Algorithms”, IEEE Transactions on Neural Networks, Vol. 16(3), pp. 645-678. A. K. Jain
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46848.2-2025技术产品文件产品设计数据管理要求第2部分:编号原则
- 资源开发保护制度
- 解毒王二明奖金制度
- 融资担保公司代偿追偿制度
- 2026山东事业单位统考济宁市兖州区招聘初级综合类岗位43人备考考试试题附答案解析
- 2026四川成都市自然资源调查利用研究院(成都市卫星应用技术中心)考核招聘2人参考考试题库附答案解析
- 2026厦门银行重庆分行社会招聘参考考试题库附答案解析
- 2026住房和城乡建设部直属事业单位第一批招聘20人参考考试试题附答案解析
- 2026交通运输部所属事业单位第四批统考招聘备考考试试题附答案解析
- 2026弥勒市自然资源局招聘业务协管员(4人)参考考试试题附答案解析
- 2026年湖南工业职业技术学院高职单招职业适应性测试备考题库含答案解析
- 国家自然基金形式审查培训
- 2026马年卡通特色期末评语(45条)
- NCCN临床实践指南:肝细胞癌(2025.v1)
- 免租使用协议书
- 2025 AHA心肺复苏与心血管急救指南
- 2026年九江职业大学单招职业适应性测试题库带答案详解
- 危化品库区风险动态评估-洞察与解读
- 激光焊接技术规范
- 消防联动排烟天窗施工方案
- 二手房提前交房协议书
评论
0/150
提交评论