![数据挖掘之聚类分析ppt课件_第1页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/c68d0ff0-74e1-462f-8cac-46de0403fadc/c68d0ff0-74e1-462f-8cac-46de0403fadc1.gif)
![数据挖掘之聚类分析ppt课件_第2页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/c68d0ff0-74e1-462f-8cac-46de0403fadc/c68d0ff0-74e1-462f-8cac-46de0403fadc2.gif)
![数据挖掘之聚类分析ppt课件_第3页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/c68d0ff0-74e1-462f-8cac-46de0403fadc/c68d0ff0-74e1-462f-8cac-46de0403fadc3.gif)
![数据挖掘之聚类分析ppt课件_第4页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/c68d0ff0-74e1-462f-8cac-46de0403fadc/c68d0ff0-74e1-462f-8cac-46de0403fadc4.gif)
![数据挖掘之聚类分析ppt课件_第5页](http://file1.renrendoc.com/fileroot_temp2/2021-1/30/c68d0ff0-74e1-462f-8cac-46de0403fadc/c68d0ff0-74e1-462f-8cac-46de0403fadc5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Clustering,Overview,Partitioning Methods K-Means Sequential Leader Model Based Methods Density Based Methods Hierarchical Methods,2,What is cluster analysis,Finding groups of objects Objects similar to each other are in the same group. Objects are different from those in other groups. Unsupervised L
2、earning No labels Data driven,3,Clusters,4,Inter-Cluster,Intra-Cluster,Clusters,5,Applications of Clustering,Marketing Finding groups of customers with similar behaviours. Biology Finding groups of animals or plants with similar features. Bioinformatics Clustering microarray data, genes and sequence
3、s. Earthquake Studies Clustering observed earthquake epicenters to identify dangerous zones. WWW Clustering weblog data to discover groups of similar access patterns. Social Networks Discovering groups of individuals with close friendships internally,6,Earthquakes,7,Image Segmentation,8,The Big Pict
4、ure,9,Requirements,Scalability Ability to deal with different types of attributes Ability to discover clusters with arbitrary shape Minimum requirements for domain knowledge Ability to deal with noise and outliers Insensitivity to order of input records Incorporation of user-defined constraints Inte
5、rpretability and usability,10,Practical Considerations,11,Scaling matters,Normalization or Not,12,13,Evaluation,14,VS,Evaluation,15,Silhouette,A method of interpretation and validation of clusters of data. A succinct graphical representation of how well each data point lies within its cluster compar
6、ed to other clusters. a(i): average dissimilarity of i with all other points in the same cluster b(i): the lowest average dissimilarity of i to other clusters,16,Silhouette,17,K-Means,18,K-Means,19,K-Means,20,K-Means,Determine the value of K. Choose K cluster centres randomly. Each data point is ass
7、igned to its closest centroid. Use the mean of each cluster to update each centroid. Repeat until no more new assignment. Return the K centroids. Reference J. MacQueen (1967): Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on Math
8、ematical Statistics and Probability, vol.1, pp. 281-297,21,Comments on K-Means,Pros Simple and works well for regular disjoint clusters. Converges relatively fast. Relatively efficient and scalable O(tkn) t: iteration; k: number of centroids; n: number of data points Cons Need to specify the value o
9、f K in advance. Difficult and domain knowledge may help. May converge to local optima. In practice, try different initial centroids. May be sensitive to noisy data and outliers. Mean of data points Not suitable for clusters of Non-convex shapes,22,The Influence of Initial Centroids,23,The Influence
10、of Initial Centroids,24,Sequential Leader Clustering,A very efficient clustering algorithm. No iteration A single pass of the data No need to specify K in advance. Choose a cluster threshold value. For every new data point: Compute the distance between the new data point and every clusters centre. I
11、f the minimum distance is smaller than the chosen threshold, assign the new data point to the corresponding cluster and re-compute cluster centre. Otherwise, create a new cluster with the new data point as its centre. Clustering results may be influenced by the sequence of data points,25,26,Gaussian
12、 Mixture,27,Clustering by Mixture Models,28,K-Means Revisited,29,model parameters,latent parameters,Expectation Maximization,30,31,EM: Gaussian Mixture,32,33,Density Based Methods,Generate clusters of arbitrary shapes. Robust against noise. No K value required in advance. Somewhat similar to human v
13、ision,34,DBSCAN,Density-Based Spatial Clustering of Applications with Noise Density: number of points within a specified radius Core Point: points with high density Border Point: points with low density but in the neighbourhood of a core point Noise Point: neither a core point nor a border point,35,
14、Core Point,Noise Point,Border Point,DBSCAN,36,p,q,directly density reachable,p,q,density reachable,o,q,p,density connected,DBSCAN,A cluster is defined as the maximal set of density connected points. Start from a randomly selected unseen point P. If P is a core point, build a cluster by gradually add
15、ing all points that are density reachable to the current point set. Noise points are discarded (unlabelled,37,Hierarchical Clustering,Produce a set of nested tree-like clusters. Can be visualized as a dendrogram. Clustering is obtained by cutting at desired level. No need to specify K in advance. Ma
16、y correspond to meaningful taxonomies,38,Agglomerative Methods,Bottom-up Method Assign each data point to a cluster. Calculate the proximity matrix. Merge the pair of closest clusters. Repeat until only a single cluster remains. How to calculate the distance between clusters? Single Link Minimum dis
17、tance between points Complete Link Maximum distance between points,39,Example,40,Single Link,Example,41,Example,42,Min vs. Max,43,3,6,5,2,1,4,A,B,C,D,E,MIN,A,B,C,D,E,MAX,Reading Materials,Text Books R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Chapter 10, 2nd Edition, John Wiley &
18、 Sons. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Chapter 8, Morgan Kaufmann. Survey Papers A. K. Jain, M. N. Murty and P. J. Flynn (1999) “Data Clustering: A Review”, ACM Computing Surveys, Vol. 31(3), pp. 264-323. R. Xu and D. Wunsch (2005) “Survey of Clustering Algorithms”, IEEE Transactions on Neural Networks, Vol. 16(3), pp. 645-678. A. K. Jain
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度棒球场租赁与赛事宣传合作合同
- 人力资源公司合作合同
- 食堂承包合同书
- 交通运输行业智能交通出行服务平台方案
- 服装厂缝纫机设备买卖合同书
- 物流市场分析与规划作业指导书
- 买卖房屋交接合同协议书
- 人工智能系统开发与部署作业指导书
- 带担保的借款合同
- 工业互联网背景下智能仓储管理解决方案
- 2024年低压电工考试题库(试题含答案)
- 成都特色民俗课件
- 花城版音乐四下-第四课-认知音乐节奏(教案)
- 宠物医院员工手册
- 2024年高考英语读后续写高分宝典专题08读后续写肢体动作描写积累1(词-句-文)讲义
- 商业与公积金贷款政策
- 时政述评培训课件
- 2022届高三体育特长生家长会
- 不对外供货协议
- 2024届高考作文主题训练:时评类(含解析)
- 260吨汽车吊地基承载力验算
评论
0/150
提交评论