建筑行业材料员复习_第1页
建筑行业材料员复习_第2页
建筑行业材料员复习_第3页
建筑行业材料员复习_第4页
建筑行业材料员复习_第5页
已阅读5页,还剩155页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、材料员复习,1、质量与体积,密度 表观密度0 堆积密度0,密 度,单位体积材料的质量密度 体积与质量是可变的,密度是不变的 相同质量的材料的体积与物相和质点的堆积状态有关,材料在绝对密实状态下,单位体积的质量,材料在自然状态下,单位体积的质量,散粒材料在堆积状态下,单位体积的质量,绝对密实状态 下,m/V 自然堆聚状态下,m/V0 松散堆积状态下,m/V0,二)材料的孔隙率与空隙率,1、材料的孔隙率、密实度、孔隙特征 1) 孔隙率,2) 密实度,2. 材料的空隙率 1) 空隙率,2)填充率,例 题,某工地质检员从一堆碎石料中取样,并将其洗净后干燥,用一个10升的金属桶,称得一桶碎石的净质量是1

2、3.50Kg;再从桶中取出1000g的碎石,让其吸水饱和后用布擦干,称其质量为1036g;然后放入一广口瓶中,并用水注满这广口瓶,连盖称重为1411g,水温为25C,将碎石倒出后,这个广口瓶盛满水连同盖的质量为791g;另外从洗净完全干燥后的碎石样中,取一块碎石磨细、过筛成细粉,称取50g,用李氏瓶测得其体积为18.8毫升。请问? 1)该碎石的密度、表观密度和堆积密度? 2)该碎石的孔隙率、开口孔隙率和闭口孔隙率? 3)该碎石的密实度、空隙率和填充率,解答,1) Vo=10L, m2=13.5kg; 0 =(m/V0)= 13.5/10 = 1.35 m=1000g, 吸水后质量=1036g.

3、 设水的密度1。 则, Vo = 791(14111036) = 416mL 0 =(m/V0)= 1000/416 = 2.404 V=18.8mL, m=50g; =(m/V)= 50/18.8=2.66 2) P = 10/ 100% =(12.404/2.66)=9.624% 其中: P开= 36/416=8.653% P闭= 9.6248.65=0.974% 3) D=1P=90.376% P=10/0 100% =(11.35/2.404)=43.8% D=1P=143.8%=56.2,碎石在水中吸水的质量开口孔隙体积,二、材料与水有关的性质 1.亲水性与憎水性:润湿角 2.吸水性

4、 :吸水率(质量和体积吸水率) 3.吸湿性:含水率 4.耐水性:软化系数 5.抗渗性:渗透系数 6.抗冻性 :冻融循环次数,二、材料与水有关的性质,一)亲水性(材料)与憎水性(材料,润湿角(接触角,亲水性:材料与水之间的分子亲合力大于水本身分子间的内聚力 900,憎水性:材料与水之间的分子亲合力小于水本身分子间的内聚力 900,材料的含水状态,2. 吸水性(浸水状态下) 材料在水中吸收水分的性质称为吸水性,用吸水率表示,3. 吸湿性 材料在潮湿空气中吸收水分的性质称为吸湿性,用含水率表示。含水率是指材料内部所含水重量占材料干重量的百分率,4. 耐水性 材料长期在水作用下不破坏、强度不显著降低的

5、性质。即材料抵抗水破坏的能力,5. 抗渗性 材料抵抗压力水渗透的性质称为抗渗性,通常用渗透系数(即一定厚度的材料,在单位压力水头作用下,在单位时间内透过单位面积的水量)表示,6、抗冻性,抗冻性材料饱水下,抵抗冻融循环破坏作用的能力 抗冻等级材料丧失性能前能承受的最多冻融循环次数,次数愈多,等级越高 冻融循环试验 冻融破坏的原因 抗冻性的影响因素,混凝土 抗冻性试验,水结冰时,体积膨胀9; 当材料内部孔隙饱水情况下,发生多次冻融循环,在水结冰时产生的拉力作用下,产生裂缝、扩展、延伸,和连通,导致材料破坏,材料内部的孔隙率与孔隙特征 孔隙内的饱水程度 材料强度与韧性 环境温度变化,热容量、比热容

6、热容量是指材料受热时吸收热量或冷却时放出热量的性质,材料与热有关的性质 导热性 材料传导热量的能力称为导热性,用导热系数(即厚度为1m的材料,当其相对两侧表面温度差为1k时,在1s时间内通过1面积的热量)表示,耐燃性和耐火性 耐燃性 材料在火焰或高温作用下可否燃烧的性质。 耐火性 材料在火焰或高温作用下,保持其不破坏、性能不明显下降的能力。用其耐受的时间来表示,称为耐火极限,材料的力学性能,强度材料抵抗外力,不变形或破坏的能力; 比强度材料强度与质量之比; 弹性材料能恢复荷载作用下的变形的性能; 塑性不可恢复荷载作用下的变形的性能; 脆性材料破坏前,不产生明显变形而突发破坏; 韧性材料破坏前,

7、能产生较大变形或吸收较大能力; 硬度材料抵抗刻划、擦伤、磨损的能力,抗压、抗拉、抗剪强度,建筑钢材的主要性能,由低碳钢在拉伸过程中形成的应力()-应变()关系图(图8.1)可知,低碳钢受拉过程可划分为以下4个阶段。 (1)弹性阶段(OA) (2)屈服阶段(AB) (3)强化阶段(BC) (4)颈缩阶段(CD,8.2.1 抗拉性能,钢材拉伸的应力应变曲线,力,4,1,2,3,5,Stress (F/A,弹性阶段,塑性阶段,应变硬化,断裂,极限拉伸强度 UTS,斜率=E,颈缩,屈服强度y,断裂强度F,将断裂后的试件拼合起来,量出标距两端点间的距离,按下式计算出伸长率,第二章,4)烧结普通砖的缺陷指

8、标 当生产烧结砖的原料中含有有害杂质或生产工艺不当时,均可造成烧结砖的质量缺陷,影响砖的耐久性。主要缺陷及耐久性指标有: 1)烧结砖的泛霜 当生产烧结砖的原料中含有可溶性无机盐时,会隐含在成品烧结砖的内部,砖吸水后再次干燥时,水分会向外迁移,这些可溶性盐随水渗到砖的表面,水分蒸发后便留下白色粉末状的盐,形成白霜,这就是泛霜现象。 泛霜严重时,由于大量盐类的溶出和结晶膨胀会造成砖砌体表面粉化及剥落,内部孔隙率增大,抗冻性显著下降。国家标准规定优等砖不得有泛霜现象,合格砖不得严重泛霜,烧结砖的石灰爆裂 有时生产烧结砖的原料中夹有石灰石等杂物,经焙烧后砖内形成了颗粒状的石灰块等物质。处于干燥条件下时

9、,这些杂质不会影响砖的性能,一旦吸水后,就会产生局部体积膨胀,导致砖体开裂甚至崩溃。石灰爆裂不仅造成砖体的外观缺陷和强度降低,还可能造成对砌体的严重危害,3)欠火砖与过火砖 烧结砖的形成是砖坯经高温焙烧,使部分物质熔融,冷凝后将未经熔融的颗粒粘结在一起成为整体。当焙烧温度不足时,熔融物太少,难以充满砖体内部,粘结不牢,这种砖称为欠火砖。欠火砖孔隙率大,强度低,抗冻性差,外观颜色较浅,为有缺陷砖。 当焙烧温度过高时,砖内熔融物过多,造成高温下的砖体变软,此时砖在点支撑下易产生弯曲变形,这种砖为过火砖。它也属于有缺陷砖。欠火砖与过火砖均为不合格产品,例6-1 试解释制成红砖与青砖的原理。 焙烧是制

10、砖最重要的环节。当砖坯在氧化气氛中烧成出窑,砖中的铁质形成了红色的Fe2O3,则制得红砖。若砖坯在氧化气氛中烧成后,再经浇水闷窑,使窑内形成还原气氛,促使砖内的红色高阶氧化铁(Fe2O3)还原成青灰色的低价氧化铁(FeO),即制得青砖。 粘土砖焙烧温度为950左右烧出的砖色泽多为红色。这是由于砖中的着色矿物,如在氧化气氛中保温、冷却时,铁形成了呈红色的Fe2O3之故。而为获得青色,则焙烧开始阶段在氧化气氛中,达到焙烧温度后,封闭火门,隔绝空气流入,并配合从窑顶洇水入窑,产生大量水蒸汽,转变成缺氧环境,使砖在还原气氛里保温、冷却。这时,砖中形成的是呈青灰色的氧化铁(FeO),制得青砖,例6-2何

11、谓烧结普通砖的泛霜和石灰爆裂?它们对建筑物有何影响? 解 泛霜是指粘土原料中的可溶性盐类(如硫酸钠等),随着砖内水分蒸发而在砖表面产生的盐析现象,一般为白色粉末,常在砖表面形成絮团状斑点。泛霜的砖用于建筑中的潮湿部位时,由于大量盐类的溶出和结晶膨胀会造成砖砌体表面粉化及剥落,内部孔隙率增大,抗冻性显著下降。 当原料土中夹杂有石灰质时,则烧砖时将被烧成过烧的石灰留在砖中。石灰有时也由掺入的内燃料(煤渣)带入。这些石灰在砖体内吸水消化时产生体积膨胀,导致砖发生胀裂破坏,这种现象称为石灰爆裂,石灰爆裂对砖砌体影响较大,轻者影响外观,重者将使砖砌体强度降低直至破坏。砖中石灰质颗粒越大,含量越多,则对砖

12、砌体强度影响越大。 51012000规定,优等品砖不允许有泛霜现象,一等品砖不允许出现中等泛霜,合格品砖不允许出现严重泛霜。标准规定,优等品砖不允许出现最大破坏尺寸大于2mm的爆裂区域;一等品砖不允许出现最大破坏尺寸大于10 mm的爆裂区域,在 10 mm之间爆裂区域,每组砖样不得多于15处,例6-3 如何识别欠火砖和过火砖? 烧结砖的形成是砖坯经高温焙烧,使部分物质熔融,冷凝后将未经熔融的颗粒粘结在一起成为整体。当焙烧温度不足时,熔融物太少,难以充满砖体内部,粘结不牢,这种砖称为欠火砖。欠火砖,低温下焙烧,粘土颗粒间熔融物少,孔隙率大、强度低、吸水率大、耐久性差;过火砖由于烧成温度过高,产生

13、软化变形,造成外形尺寸极不规整。欠火砖色浅、敲击时声哑,过火砖色较深、敲击时声清脆,第三章,胶凝材料的定义和分类,胶凝材料的定义 经过一系列的物理和化学变化,能够产生凝结硬化,将块状或粉状材料胶结起来,形成为一个整体的材料。 胶凝材料的分类,如沥青、聚合物等,胶凝材料,无机胶凝材料,有机胶凝材料,气硬性胶凝材料,水硬性胶凝材料,如:石灰、石膏、水玻璃等,石膏的水化:半水石膏遇水后将重新水化生成二水石膏: 随着浆体中自由水分因水化和蒸发而逐渐减少,浆体也逐渐变稠,这个过程称为凝结过程。其后,二水石膏晶体继续大量形成、长大,晶体之间互相交错连生,形成结晶结构网,使浆体变硬,并形成具有强度的石膏制品

14、。这个过程称为硬化过程,建筑石膏的凝结硬化,1)凝结硬化快 :30分钟完全失去可塑性 (2)凝固时体积微膨胀 :约0.5%-1% (3)孔隙率大,表观密度小,绝热、吸声性能好 (4)具有一定的调温调湿性 (5)防火性好,但耐火性差 (6)耐水性、抗冻性差,建筑石膏的性质特点,石灰的熟化硬化过程,生石灰的熟化 熟化的过程 生石灰+水 熟石灰 熟化的方式 淋 灰生石灰粉(消石灰粉) 化 灰 熟石灰膏 熟化过程的特点 放出大量的热;体积膨胀1.53.5倍。 熟化过程的注意事项 熟石灰在使用前必须陈伏15d以上防止过火石灰的危害; 在化灰池表面保留一层水防止石灰碳化,MgO + H2O = Mg(OH

15、)2 CaO + H2O = Ca(OH)2 + 64.83kj,石灰的硬化包含下面两个同时进行的过程: 结晶过程多余水分蒸发或被砌体吸收,Ca(OH) 2逐渐从饱和溶液中析出结晶。 碳化过程Ca(OH) 2和空气中的CO2化合,生成碳酸钙晶体。反应式如下,1)良好的可塑性及保水性 (2)凝结硬化慢、强度低 (3)耐水性差 (4)体积收缩大 (5)吸湿性强,石灰的特性,石灰的储存,生石灰储存时间不宜过长,一般不超过一个月。作到“随到随化”。 不得与易燃、易爆等危险液体物品混合存放和混合运输。 熟石灰在使用前必须陈伏15d以上,以防止过火石灰对建筑物产生的危害,第四章 水泥,水泥的分类,按性能和

16、用途分,水 泥,通用水泥,专用水泥,特性水泥,硅酸盐水泥,普通硅酸盐水泥,矿渣硅酸盐水泥,粉煤灰硅酸盐水泥,火山灰质硅酸盐水泥,复合硅酸盐水泥,石灰石硅酸盐水泥,如砌筑水泥、油井水泥、道路水泥、大坝水泥等,如白色硅酸盐水泥、快凝快硬硅酸盐水泥等,硅酸盐水泥的原材料和生产工艺,硅酸盐水泥的原材料 生产硅酸盐水泥熟料的原材料 石灰质原料 天然石灰石。也可采用与天然石灰石化学成分相似的材料如白垩、石灰华等。 粘土质原料 主要为粘土,其主要化学成分为SiO2,其次为Al2O3和少量Fe2O3。 铁矿粉 采用赤铁矿,化学成分为Fe2O3。 石膏主要为天然石膏矿、无水硫酸钙等 。 混合材料 包括活性混合材

17、料(粒化高炉矿渣、粉煤灰、火山灰质混合材料等)和非活性混合材料(石灰石粉、磨细石英砂等,硅酸盐水泥的生产工艺“两磨一烧”工艺 生产水泥的方法主要有干法立窑生产和湿法回转窑生产两种 ; 硅酸盐水泥分为:型硅酸盐水泥(不掺混合材料)和型硅酸盐水泥(掺不超过5%混合材料,硅酸盐水泥的原材料和生产工艺,石灰石,粘 土,铁矿粉,生 料,石 膏,硅酸盐水泥,混合材料,熟 料,按比例混合,磨细,13501450,煅烧,磨细,体积安定性,体积安定性是指水泥浆体硬化后体积变化的稳定性。水泥在硬化过程中体积变化不稳定,即为体积安定性不良。 水泥安定性不良的原因: 熟料中含有过量的游离氧化钙(fCaO),或含有过量

18、的游离氧化镁(fMgO); 生产水泥时掺入的石膏过量。 国家标准GB1751999规定,硅酸盐水泥的安定性用沸煮法检验必须合格。 体积安定性不良的水泥严禁用于工程中,六、硅酸盐水泥的特性及应用,凝结硬化快,早期及后期强度均高,适用于有早强要求的工程。 抗冻性好,适合水工混凝土和抗冻性要求高的工程。 耐腐蚀性差,因水化后氢氧化钙和水化铝酸钙的含量较多。 水化热高,不宜用于大体积混凝土工程。但有利于低温季节蓄热法施工。 抗碳化性好。因水化后氢氧化钙含量较多,故水泥石的碱度不易降低,对钢筋的保护作用强。适用于空气中二氧化碳浓度高的环境。 耐热性差。因水化后氢氧化钙含量高。不适用于承受高温作用的混凝土

19、工程。 耐磨性好,适用于高速公路、道路和地面工程,混合材料及其分类,混合材料 为了改善水泥性能、提高水泥的产量,在生产时掺入的天然或人工矿物质材料。 活性混合材料 具有潜在水硬性或火山灰特性,或者兼具有潜在水硬性和火山灰特性的混合材料。 粒化高炉矿渣; 粉煤灰; 火山灰质混合材料 非活性混合材料 不具有潜在水硬性或质量活性指标不能达到规定要求的混合材料。如磨细石灰石粉、磨细石英砂等,矿渣水泥、粉煤灰水泥、火山灰水泥,定义 技术性质要求(与普通水泥相比) 相同点:细度、凝结时间、安定性的技术要求相同。 不同点:(1)三氧化硫含量:矿渣水泥不超过4.0;火山灰质水泥、粉煤灰水泥不得超过3.5。(2

20、)MgO含量不超过5%,熟料中不超过6,熟料,适量石膏,20%70%粒化高炉矿渣,20%40%粉煤灰,20%50%火山灰质混合料,矿渣水泥 (PO,粉煤灰水泥 (PS,火山灰水泥 (PP,磨细,磨细,磨细,矿渣水泥、粉煤灰水泥、火山灰水泥,主要特性(与硅酸盐水泥、普通水泥相比) 三种水泥的共同特性 凝结硬化较慢,早强强度较低,后期强度增长较快; 水化热较低,放热速度慢; 抗硫酸盐腐蚀和抗水性较好; 蒸汽养护适应性好; 抗冻性、耐磨性及抗碳化性能较差。 三种水泥各自特性 矿渣水泥的抗渗性较差,但耐热性好,可用于温度不高于200的混凝土工程中。 火山灰水泥的抗渗性好,但干缩较大,不适用于长期处于干

21、燥环境中的混凝土工程。 粉煤灰水泥干缩小,抗裂性好,例3-2 何谓水泥的体积安定性?水泥的体积安定性不良的原因是什么?安定性不良的水泥应如何处理? 解 水泥浆体硬化后体积变化的均匀性称为水泥的体积安定性。即水泥硬化浆体能保持一定形状,不开裂,不变形,不溃散的性质。导致水泥安定性不良的主要原因是: (1) 由于熟料中含有的的游离氧化钙、游离氧化镁过多; (2) 掺入石膏过多,其中游离氧化钙是一种最为常见,影响也是最严重的因素。熟料中所含游离氧化钙或氧化镁都是过烧的,结构致密,水化很慢。加之被熟料中其它成分所包裹,使得其在水泥已经硬化后才进行熟化,生成六方板状的Ca(OH)2晶体,这时体积膨胀97

22、以上,从而导致不均匀体积膨胀,使水泥石开裂。当石膏掺量过多时,在水泥硬化后,残余石膏与水化铝酸钙继续反应生成钙矾石,体积增大约1.5倍,也导致水泥石开裂。 体积安定性不良的水泥,会发生膨胀性裂纹使水泥制品或混凝土开裂、造成结构破坏。因此体积安定性不良的水泥,应判为废品,不得在工程中使用,例3-3 现有四种白色粉末,已知其为建筑石膏、生石灰粉、白色石灰石粉和白色硅酸盐水泥,请加以鉴别(化学分析除外)。 解 取相同质量的四种粉末,分别加入适量的水拌合为同一稠度的浆体。放热量最大且有大量水蒸气产生的为生石灰粉;在分钟内凝结硬化并具有一定强度的为建筑石膏;在分钟到小时内凝结硬化的为白色水泥;加水后没有

23、任何反应和变化的为白色石灰石粉,鉴别这四种白色粉末的方法有很多,主要是根据四者的特性来区分。生石灰加水,发生消解成为消石灰氢氧化钙,这个过程称为石灰的“消化”,又称“熟化”,同时放出大量的热;建筑石膏与适量水拌合后,能形成可塑性良好的浆体,随着石膏与水的反应,浆体的可塑性很快消失而发生凝结,此后进一步产生和发展强度而硬化。一般石膏的初凝时间仅为10min左右,终凝时间不超过30min。白色硅酸盐水泥的性能和硅酸盐水泥基本项同,其初凝时间不早于45min,终凝时间不超过6h30min。石灰石粉与水不发生任何反应,第五章 混凝土,一) 普通混凝土的组成,水泥,水,水泥浆,石子,砂子,骨 料,新拌混

24、凝土,100%体积,6075,715,2540,1421,2128,3942,凝结硬化,硬化混凝土,混凝土外加剂,为了改善或提高混凝土的性能,各组成材料的作用,骨 料 廉价的填充材料,节省水泥用量 混凝土的骨架,减小收缩,抑制裂缝的扩展 传力作用 降低水化热 提高耐磨性,水泥浆 润滑作用与水形成水泥浆,赋予新拌混凝土以流动性 胶结作用包裹在所有骨料表面,通过水泥浆的凝结硬化,将砂、石骨料胶结成整体,形成固体,含水状态:完全干燥 气 干 饱和面干 含水湿润,含水量: 不含水 有效含水量 有效含水量 有效含水量,完全干燥 气 干 饱和面干 含水湿润,骨料的含水状态,混凝土拌合物的技术性质:和易性,

25、混凝土拌合物便于施工操作,能够达到结构均匀、成型密实的性能。和易性主要包括流动性、粘聚性和保水性,和易性,粘聚性,保水性,流动性,易达结构均匀,易成型密实,好,好,在本身自重或施工机械振捣作用下,能产生流动并且均匀密实地填满模板的性能,各组成材料之间具有一定的内聚力,在运输和浇注过程中不致产生离析和分层现象的性质,具有一定的保持内部水分的能力,在施工过程中不致发生泌水现象的性质,保证混凝土硬化后的质量,二、和易性的评定,定量测定拌合物的流动性、辅以直观经验评定粘聚性和保水性,1.坍落度法 测定混凝土拌合物在自重作用下产生的变形值坍落度(单位mm)。 适用范围: 集料最大粒径不大于40mm; 坍

26、落度值不小于10mm的低塑性混凝土、塑性混凝土,影响和易性的因素,1.组成材料及其用量之间的关系 水泥浆数量和单位用水量; 骨料的品种、级配和粗细程度; 砂率 ; 外加剂 。 见下图。 2.施工环境的温度、搅拌制度等,水泥,水,砂,石子,外加剂,水泥浆,骨料,混凝土拌合物,影响和易性的因素,合理砂率的确定 合理砂率是指在水泥浆数量一定的条件下,能使拌合物的流动性(坍落度T)达到最大,且粘聚性和保水性良好时的砂率;或者是在流动性(坍落度T)、强度一定,粘聚性良好时,水泥用量最小的砂率,改善和易性的措施,采用合理砂率; 改善砂石的级配; 掺外加剂或掺合料; 根据环境条件,注意坍落度的现场控制,在水

27、灰比不变的条件下,适当增加水泥浆的用量,可增大拌合物的流动性; 在砂率不变的条件下,适当增加砂石的用量,可减小拌合物的流动性,掺外加剂的混凝土,影响混凝土强度的因素 影响混凝土强度的主要因素有:(1)水泥强度与水灰比混凝土强度,随水灰比增大而降低,呈曲线关系,而混凝土强度与灰水比呈直线关系,当混凝土水灰比值在0.400.80之间时越大,则混凝土的强度越低; 水泥强度越高,则混凝土强度越高,式中fcu,0混凝土28天抗压强度, a; fce水泥的实际强度,a; 灰水比; 每立方米混凝土中水泥用量, kg; 每立方米混凝土中用水量, kg。 a,b为回归系数 采用碎石:a=0.46b0.07 采用

28、卵石:a=0.48b =0.33,水泥石与骨料的粘结情况与骨料种类和骨料表面性质有关,表面粗糙的碎石比表面光滑的卵石(砾石)的粘结力大。在其他条件相同的情况下,碎石混凝土的强度比卵石混凝土的强度高。根据大量试验建立的混凝土强度公式,3) 龄期 在正常养护条件下,混凝土强度的增长遵循水泥水化历程规律,即随着龄期时间的延长,强度也随之增长。最初内,强度增长较快,以后增长较慢。但只要温湿度适宜,其强度仍随龄期增长。普通水泥制成的混凝土,在标准养护条件下,其强度的发展,大致与其龄期的对数成正比(龄期不小于三天,式中fnnd龄期混凝土的抗压程度, MPa; 28 28龄期混凝土的抗压强度, MPa;lg

29、、lg 28(不小于3)和28的常用对数,徐变 混凝土在恒定荷载长期作用下,随时间增长而沿受力方向增加的非弹性变形,称为混凝土的徐变。 一般认为,徐变是由于水泥石中凝胶体在外力作用下,粘滞流变和凝胶粒子间的滑移而产生的变形,还与水泥石内部吸附水的迁移等有关。 影响混凝土徐变因素很多,混凝土所受初应力越大,在混凝土制成后龄期较短时加荷,水灰比越大,水泥用量越多,都会使混凝土的徐变增大;另外混凝土弹性模量大,会减小徐变,混凝土养护条件越好,水泥水化越充分,徐变也越小,混凝土的徐变会使构件的变形增加,在钢筋混凝土截面中引起应力的重新分布。对预应力钢筋混凝土结构,混凝土的徐变将使钢筋的预应力受到损失。

30、但有时徐变也对工程有利,如徐变可消除或减小钢筋混凝土内的应力集中,使应力均匀地重新分布。对大体积混凝土,徐变能消除一部分由温度变形所产生的破坏应力,混凝土配制强度 在施工中配制混凝土时,如果所配制混凝土的强度平均值( )等于设计强度(fcu,), 则混凝土强度保证率只有50。因此,为了保证工程混凝土具有设计所要求的95强度保证率,在进行混凝土配合比设计时,必须使混凝土的配制强度大于设计强度(fcu,二、配合比设计的要求,满足结构设计的强度等级要求; 满足混凝土施工所要求的和易性; 满足工程所处环境对混凝土耐久性的要求; 符合经济原则,即节约水泥以降低混凝土成本,三、配合比设计基本参数,水灰比(

31、 mw/mc )、单位用水量(mw)和砂率(s)是混凝土配合比设计的三个基本参数,水泥,水,砂,石子,水泥浆,骨料,混凝土,单位用水量mw,砂率w,水灰比 mw/mc,与强度、耐久性有关,与流动性有关,与粘聚性、保水性有关,五、配合比计算例题,例题 某工程现浇室内钢筋混凝土梁,混凝土设计强度等级为C30。施工采用机械拌合和振捣,选择的混凝土拌合物坍落度为3050mm。施工单位无混凝土强度统计资料。所用原材料如下: 水泥:普通水泥,强度等级42.5MPa,实测28d抗压强度48.0MPa,密度c3.1g/cm3; 砂:中砂,级配2区合格。表观密度s2.65g/cm3; 石子:卵石,540mm。表

32、观密度g2.60g/cm3; 水:自来水,密度w1.00g/cm3。 试用体积法和质量法计算该混凝土的基准配合比,五、配合比计算例题,解: 1.计算混凝土的施工配制强度fcu,0: 根据题意可得:fcu,k30.0MPa,查表3.24取5.0MPa,则 fcu,0 fcu,k + 1.645 30.0+1.6455.038.2MPa 2.确定混凝土水灰比mw/mc (1)按强度要求计算 根据题意可得:fce48.0MPa,a0.48,b0.33,则: (2)复核耐久性:经复核,耐久性合格,五、配合比计算例题,3.确定用水量mw0 根据题意,骨料为中砂,卵石,最大粒径为40mm,查表取mw016

33、0kg。 4.计算水泥用量mc0 (1)计算: (2)复核耐久性 经复核,耐久性合格。 5.确定砂率s 根据题意,采用中砂、卵石(最大粒径40mm)、水灰比0.50,查表s2833,取s30。 6.计算砂、石子用量ms0、mg0,五、配合比计算例题,1)体积法 将数据代入体积法的计算公式,取1,可得: 解方程组,可得ms0570kg、mg01330kg。 (2)质量法 假定混凝土拌合物的质量为mcp2400kg,将数据代入质量法计算公式,得: ms0 + mg02400320160 解方程组,可得ms0576kg、mg01344kg,6.计算基准配合比 (1)体积法 mc0:ms0:mg032

34、0:570:13301:1.78:4.16, mw/mc 0.50; (2)质量法 mc0:ms0:mg0320:576:13441:1.80:4.20, mw/mc 0.50,第六章 砂浆,6.1.4.1 水泥混合砂浆配合比设计,1)计算试配强度 (2)每立方米砂浆中的水泥用量按下式计算,6.1.4 砌筑砂浆配合比设计,3)确定1m3水泥混合砂浆的掺加料用量: QD=QA-QC (4)每立方米砂浆中的砂子用量,应按干燥状态(含水率小于0.5%)的堆积密度值作为计算值(kg)。 (5)每立方米砂浆中的用水量,根据砂浆稠度等要求可选用240310kg,例题1】要求设计用于砌筑砖墙的水泥混合砂浆配

35、合比。设计强度等级为M7.5,稠度为7090mm。 原材料的主要参数,水泥:32.5级矿渣水泥;干砂:中砂,堆积密度为1450kg/m3;石灰膏:稠度120mm;施工水平:一般。 【解】 (1)计算试配强度fm,o fm,o=f2+0.645 式中f2=7.5MPa =1.88MPa(查表6.2) fm,o=7.5+0.6451.88=8.7MPa,2)计算水泥用量QC QC=1000(fm,o-)/(fce) 式中 fm,o=8.7MPa =3.03,=-15.09 fce=32.5MPa QC=1000(8.7+15.09)/(3.0332.5)=242kg/m3 (3)计算石灰膏用量QD

36、 QD=QA-QC 式中QA=330kg/m3 QD=330-242=88kg/m3,4)砂子用量QS QS=1450kg/m3 (5)根据砂浆稠度要求,选择用水量为300kg/m3 水的用量Qw=(300-1450*2%)=271kg 砂浆试配时各材料的用量比例: 水泥石灰膏砂=242881450=10.365.99,例题2】要求设计用于砌筑砖墙的水泥砂浆,设计强度为M10,稠度7090mm。原材料的主要参数,水泥:32.5级矿渣水泥;干砂:中砂,堆积密度为1400kg/m3;施工水平:一般。 【解】 (1)根据表6.3选取水泥用量260kg/m3 (2)砂子用量QS QS=1400kg/m

37、3 (3)根据表6.3选取用水量为290kg/m3 砂浆试配时各材料的用量比例: 水泥砂=2601400=15.38,第七章 建筑钢材,8.1 钢的冶炼和分类,钢是由生铁冶炼而成的。钢和铁都是铁碳合金,钢的含碳量在2%以下,而生铁的含碳量大于2%。另外钢中的杂质含量也少于生铁。 生铁有炼钢生铁和铸造生铁之分。 钢的冶炼就是将熔融的生铁进行氧化,使碳的含量降低到规定范围,其他杂质含量也降低到允许范围之内,8.1.1 钢的冶炼,根据炼钢设备所用炉种不同,炼钢方法主要可分为平炉炼钢、氧气转炉炼钢、电炉炼钢三种。 (1)平炉炼钢 它以熔融状或固体状生铁、铁矿石或废钢铁为原料,以煤气或重油为燃料。利用铁

38、矿石中的氧或鼓入空气中的氧使杂质氧化。可用于炼制优质碳素钢和合金钢等,2)氧气转炉炼钢 以熔融的铁水为原料,由转炉顶部吹入高纯度氧气,能有效地去除有害杂质,并且冶炼时间短(2040min),生产效率高,所以氧气转炉钢质量好,成本低,应用广泛。 (3)电炉炼钢 以电为能源迅速将废钢、生铁等原料熔化,并精炼成钢。电炉又分为电弧炉、感应炉和电渣炉等,冶炼后的钢水中含有以FeO形式存在的氧,FeO与碳作用生成CO气泡,并使某些元素产生偏析(分布不均匀),影响钢的质量。所以必须进行脱氧处理,方法是在钢水中加入锰铁、硅铁或铝等脱氧剂。 根据脱氧程度的不同,钢可分为沸腾钢、镇静钢和半镇静钢三种,1)沸腾钢

39、是脱氧不完全的钢。 (2)镇静钢 是脱氧充分的钢。 (3)半镇静钢 其脱氧程度和质量介于上述两者之间。 建筑钢材是将钢坯加热后经轧制而成的,一、钢及其特性,钢 理论上,凡是把含碳量小于2%,含杂质比较少的铁碳合金称为钢。 含碳量超过2%,称为生铁;含碳量小于0.08%,称为工业纯铁。 钢的特点 具有强度高,塑性好,具有良好的韧性;工艺性能良好,易于加工;但是,钢材易锈蚀、耐火性差,三)钢的含碳量与性能关系,亚共析钢: 碳含量位于0.020.77之间 晶体组织为铁素体和珠光体 共析钢: 碳含量在0.77 晶体组织全部为珠光体 共析钢: 碳含量在0.772.11之间 晶体组织为珠光体和渗碳体 含碳

40、量的增加 珠光体逐渐减少,渗碳体逐渐增多 强度与硬度逐渐提高,塑性与韧性逐渐降低,晶体组织含量(,性能变化,0.02,分类,项目,工业纯铁,亚共析钢,铁素体,珠光体,渗碳体,过共析钢,含碳量,0.77,2.11,0,塑性、韧性,硬度,强度,铁碳合金的含碳量、晶体组织与性能的关系,1)碳是决定钢材性能的主要元素。 如图8.7所示,随着含碳量的增加,钢的强度和硬度提高,塑性和韧性下降。但当含碳量大于1.0%时,由于钢材变脆,强度反而下降。 (2)硅、锰 加入硅和锰可以与钢中有害成分FeO和FeS分别形成SiO2、MnO和MnS而进入钢渣排出,起到脱氧、降硫的作用,8.2.7 钢的化学成分对钢材性能

41、的影响,3)硫、磷 硫不溶于铁而以FeS的形式存在,FeS和Fe形成低熔点的共晶体。当钢材温度升至1000以上进行热加工时,共晶体熔化,晶粒分离,使钢材沿晶界破裂,这种现象叫做热脆性。 磷能使钢的强度、硬度提高,但显著降低钢材的塑性和韧性,特别是低温状态的冲击韧性下降更为明显,使钢材容易脆裂,这种现象叫做冷脆性,4)氧、氮 未除尽的氧、氮大部分以化合物的形式存在,如FeO、Fe4N等。这些非金属化合物、夹杂物降低了钢材的强度、冷弯性能和焊接性能。氧还使钢的热脆性增加,氮使冷脆性及时效敏感性增加。 (5)钛、钒、铌是钢的强脱氧剂和合金元素。能改善钢的组织、细化晶粒、改善韧性,并显著提高强度,钢材

42、的时效,时效 钢材随时间的延长,其强度、硬度提高,而塑性、冲击韧性降低的现象称为时效。 时效分为自然时效和人工时效两种。 自然时效是将其冷加工后,在常温下放置1520d; 人工时效是将冷加工后的钢材加热至100200保持2h以上。 经过时效处理后的钢材,其屈服强度、抗拉强度及硬度都将提高,而塑性和韧性降低,热处理,热处理是将钢材按一定的规则加热、保温和冷却,以获得需要性能的一种工艺过程。 热处理的方法有:淬火和回火。 淬火:将刚才加热至基本组织改变温度(723)以上保温,是基本组织转变成奥氏体,然后投入到水中或矿物油中急冷。 回火:加热至基本组织改变温度一下(150-650)保温后按一定制度冷

43、却至室温,一) 碳素结构钢,1、钢的牌号: 根据国标GB700-1988,碳素结构钢按照屈服强度分为Q195、Q215、Q235、Q255和Q275五个牌号,每个牌号又根据硫、磷等杂质含量分为A、B、C、D四个质量等级。 牌号的顺序:屈服强度字母Q、屈服强度数值、 质量等级(A、B、C、D)、 脱氧程度符号(F、b、Z、TZ)。 例如:Q235AF,表示屈服强度为235MPa,A级沸腾(F)碳素结构钢。 2、钢牌号与性能的关系 钢牌号越大,钢的含碳量增加,强度与硬度增高,塑性和韧性降低,可焊性变差,碳素结构钢,3、选用原则:应根据钢结构的工作条件、荷载类型、连接方式、环境温度与介质的腐蚀情况等

44、综合因素选用。 例如: Q195和Q215号钢强度较低,塑性和韧性较大,易弯加工,可用于钢钉、螺栓等。 Q235A使用于承受静载作用的钢结构; Q235B可用于承受动载焊接的普通钢结构; Q235C可用于承受动载焊接的重要钢结构; Q235D可用于低温承受动荷载焊接的钢结构。 Q255和Q275强度较高,塑性和韧性较差,主要用于机械零件等,二)优质碳素结构钢,1、钢的牌号 用两位数字表示,代表平均含碳量的万分数,如含锰量较高时,在牌号后加注(Mn)。 如:45号钢,表示气焊碳量为0.45%。 2、选用: 3045号钢,用于重要结构的钢铸件和高强度螺栓; 6580号钢,常用于制作碳素钢丝、刻痕钢

45、丝和钢绞线等,三)低合金结构钢,1、组成:含有5%以下的合金元素(Si、Mn、Ti、V、Cr、Ni、Cu等)。含碳量0.2%。 2、合金元素的作用: 细化结晶,起到细晶强化作用,不仅可提高强度和硬度,还可一定程度上增加塑性和韧性。 弥散强化作用,较硬微粒均匀分散在晶粒内部,阻碍晶粒滑移变形,大大提高钢的强度和硬度。 3、牌号:与碳素结构钢一样,用Q+屈服强度值+质量等级(A、B、C、D、E)表示。 4、特性:强度和硬度高,有害杂质少,质量高且稳定,良好的塑性和韧性,适当的可焊性。 5、应用:适合于大跨度结构、高层建筑和桥梁,低合金结构钢的性能要求,1) 高强度:一般其屈服强度在300MPa以上

46、。 (2) 高韧性:要求延伸率为15%20%,室温冲击韧性大于600kJ/m2800kJ/m2。对于大型焊接构件,还要求有较高的断裂韧性。 (3) 良好的焊接性能和冷成型性能。 (4) 低的冷脆转变温度。 (5) 良好的耐蚀性,低合金结构钢的组成特点,低碳:由于韧性、焊接性和冷成形性能的要求高,其碳含量不超过0.20%。 加入以锰为主的合金元素。 加入铌、钛或钒等辅加元素:少量的铌、钛或钒在钢中形成细碳化物或碳氮化物,有利于获得细小的铁素体晶粒和提高钢的强度和韧性。 加入少量铜(0.4%)和磷(0.1%左右)等,可提高抗腐蚀性能。 加入少量稀土元素,可以脱硫、去气,使钢材净化,改善韧性和工艺性

47、能,问题:与碳素钢相比,低合金结构钢有何特点,答:由于低合金结构钢中的合金元素的细晶强化和弥散强化作用,以及含碳量低,有害杂质少,质量较高且稳定,使得低合金结构钢有以下特点: 不但具有较高的屈服强度和抗拉强度,而且具有较好的塑性、韧性和适当的焊接性,耐低温性较好,时效敏感性也较小,沥青材料及防水材料,概 述,沥青: 有机胶凝材料,是高分子碳氢化合物和非金属衍生物的混合物。 沥青的特点 热塑性材料,加热就软化; 憎水性材料,耐水、不溶于水; 良好的粘结性和粘弹性; 较强的耐腐蚀性,沥青分类,一、石油沥青,定义: 石油原油经蒸馏等提炼各种轻油(如汽油、柴油等)及润滑油后的残留物,或经过加工而得的产

48、品。是一种有机胶凝材料。 常温下有固体、半固体或粘性液体三种形态,一)石油沥青的组分与结构,化学组成: 83% 碳; 10% 氢; 7% 氧, 氮 和硫; 微量的钒、镍、铝和硅,一)石油沥青的组分与结构,组分 油分(芳香油和饱和油) 油状液体,密度最小,加热可以挥发,能溶于有机溶剂,它们赋予沥青以流动性。分子量为100 500 。 树脂(沥青脂胶) 粘稠状液体(半固体),密度大于油分,属于中性树脂,能溶于有机溶剂(苯、汽油)。它们赋予沥青以良好的粘结性、塑性和可流动性,分子量为5001000 。 地沥青质(沥青质) 固态无定性物质,密度大于1,决定沥青的温度敏感性和粘性,其含量越高,沥青软化点

49、越高,粘性越大,越硬脆。分子量大于10006000,2、石油沥青的胶体结构,组分的相溶特性 油分与树脂相溶; 树脂能浸润地沥青质; 地沥青质对油分有憎液性。 胶体结构 以地沥青质为核心构成胶核; 胶核周围形成树脂薄膜,薄膜外吸附一层油分构成胶团; 无数胶团分散在油分中而形成胶体结构。 分散体结构 分散相是吸附部分树脂的地沥青质; 分散介质是溶有部分树脂的油分,沥青的胶体结构,溶胶结构 油分较多,胶团较少,温度稳定性差; 胶团相对运动自由,流动性和塑性较好。 溶凝胶结构 介于溶胶结构与凝胶结构之间。 凝胶结构 油分与树脂较少,地沥青质较多,温度稳定性好; 胶团相互连接成不规则空间网状的凝胶结构,

50、弹性和粘性较高,流动性和塑性较低,溶胶结构,凝胶结构,沥青的胶体结构,粘性(粘滞性) 塑性(延性) 温度敏感性 大气稳定性 其他性能,二)石油沥青的技术性质,石油沥青的技术性质,粘性(粘滞性) 概念: 粘性反映石油沥青材料抵抗外力或自重作用下变形的能力。 评价指标:相对粘度和针入度。相对粘度越大或针入度越小,粘性越大。 测定方法:标准粘度计和针入度仪法。 影响因素: 组成: 地沥青质含量较高,油分含量较小但有时量树脂,则粘性大; 温度: 在一定温度范围内,粘性随温度升高而降低,反之则随之增大,沥青的针入度试验,规定的荷载、时间和温度下进行,塑 性 概念 塑性指石油沥青在外力作用时产生变形而不破

51、坏,除去外力后,则仍保持变形后的形状的性质。也反映了沥青的自愈合性能。 评价指标 延度(伸长度),延度越大,塑性越好。 测定方法 把沥青试样制成8字型标准试模(中间最小截面积1cm2),在规定拉伸速度(5cm/min)和规定温度(25C)下拉断时的长度,即为延度,用cm为单位表示。 影响因素 树脂含量较多,其他组分含量适当时,则塑性较大; 温度升高,塑性增大;沥青膜层厚度越厚,则塑性愈大,石油沥青的技术性质,延度,沥青延度试验,温度敏感性 概念 敏感性是指石油沥青的粘性和塑性随温度升降而改变的程度。 评价指标 软化点,它是沥青材料由固态转变为粘流态时的温度。 测定方法 环球法 影响因素 地沥青

52、质含量高,软化点高,温度敏感性减小; 沥青中蜡含量高,增大其温度敏感性; 加入矿物粉末填料(滑石粉、石灰石粉等)可减小其温度敏感性,石油沥青的技术性质,大气稳定性 概念 指石油沥青在热、光、氧和潮湿等因素长期作用下,抵抗老化使性能稳定的程度。 老化现象 上述因素作用下的变化 沥青各组分发生递变,油分和树脂含量逐渐减小,而地沥青质含量逐渐增多,流动性和塑性降低,硬脆性增大的过程。 评价指标 蒸发后的质量损失或蒸发后的针入度比,蒸发损失愈小或蒸发后针入度比愈大,则大气稳定性愈好,“老化”愈慢。 测定方法 测量在160C下蒸发5小时后,沥青的针入度与蒸发前针入度比值的百分数,即为蒸发后针入度比。 影

53、响因素 石油沥青中油分含量高,则大气稳定性差,石油沥青的技术性质,大气稳定性评价,针入度比,老化后沥青的针入度,老化前沥青的针入度,其他性能 溶解度 石油沥青在三氯乙烯、四氯化碳或笨中溶解的百分率,以表示沥青中有效物质含量,即纯净程度。不溶解的物质会降低沥青的性能,应加以限制。 闪点 加热沥青至初次闪火(有蓝色闪光)时的沥青温度。 燃点或着火点 加热沥青,并与火接触能持续燃烧5秒以上时的温度,石油沥青的技术性质,三)石油沥青的标准、选用与掺配,1、石油沥青的技术标准 道路石油沥青(有七个牌号) 牌号越大,粘性越小(针入度越大); 牌号越大,塑性越好(延度越大); 牌号越大,温度敏感性越大(软化

54、点越低)。 建筑石油沥青(有两个牌号) 牌号越小,粘性越大(针入度越小); 牌号越大,塑性越差(延度越小); 牌号越大,温度敏感性越小(软化点越高)。 普通石油沥青(有三个牌号) 由于含蜡较多,温度敏感性大,粘性较小,塑性较差,2、石油沥青的选用 选用原则:根据工程性质与要求、适用部位、环境条件等因素选用,在满足适用条件的前提下,应选用牌号较大的石油沥青,以保证使用寿命。 道路沥青 拌制沥青混凝土、沥青拌和料或沥青砂浆; 密封材料、粘结剂以及沥青涂料。 建筑石油沥青 制造油纸,油毡、防水涂料和沥青胶,绝大部分用于屋面、地下防水、沟槽防水防腐蚀及管道防腐等工程。 普通石油沥青 在建筑上不宜直接使

55、用,可以采用吹气氧化法改善其性能,3、沥青的掺配 如某一牌号的沥青不能满足工程技术的要求,可以用不同牌号的沥青掺配,实验证明同产源的沥青掺配后可得均匀的沥青,两种沥青得掺配比例可以按下式估算: Q1= Q2 = 100Q1 式中:Q1、Q2分别为两种沥青的用量(); T1、T2分别为两种沥青的软化点,T2T,T2T1,100,二、煤沥青,将煤焦油进行蒸馏,蒸去水分和所有的轻油及部分中油、重油和蒽油后所得残渣就是煤沥青。 化学成分: 未饱和芳香烃及非金属衍生物的复杂混合物。 与石油沥青相比,有如下特点: 温度敏感性大,夏天易流淌,冬天易硬脆; 大气稳定性较差,可挥发分较多; 塑性较差,容易因变形

56、而开裂; 防腐能力较好,可用作木材防腐处理; 含表面活性物质较多,与矿物表面粘附性较好。 密度较大,1.101.26kg/m3,例7-1 某建筑工程屋面防水,需用软化点为75的石油沥青,但 工地仅有软化点为95和25的两种石油沥青,问应如何掺配? 解 掺配时较软石油沥青(软化点为25)用量为: 较硬石油沥青(软化点为95)用量为: Q2=100%-Q1=71.4% 以估算的掺配比例和其邻近的比例(10)进行试配(混合熬制均匀),测定掺配后沥青的软化点,然后绘制“掺配比一软化点”关系曲线,即可从曲线上确定出所要求的掺配比例,例7-2 某工地需要使用软化点为 85的石油沥青5 ,现有10号石油沥青

57、3.5,30号石油沥青1 和60乙石油沥青 。试通过计算确定出三种牌号沥青各需用多少吨? 解 由表10-3知10号石油沥青的软化点为 95 30号石油沥青的软化点为 70 由表10-2知60乙石油沥青的软化点为 50,1) 10号石油沥青和30号石油沥青掺配: 30号石油沥青掺量为: 10号石油沥青掺量为 Q2=100%-Q1=100%40%=60% 设掺配 1 30号石油沥青,需x1 t 10号石油沥青, 60%x =40%1 x = 0.67 t 则用30号石油沥青1 和10号石油沥青0.67 , 可配制1.67t软化点为 85的石油沥青。尚需要用10号石油沥青和60号乙石油沥青配制 51

58、.67=3.33t软化点为 85的石油沥青,2) 10号石油沥青和60号乙石油沥青掺配 60号乙石油沥青掺量为 10号石油沥青掺量为 Q2=100%-Q1=100%22.2%=77.8% 则配制3.33t软化点为 85的石油沥青, 60乙石油沥青需要量为:3.33t22.2% =0.74t 10号石油沥青需要量为: 3.33t77.8% =2.59t 10号石油沥青合计需要量为: 0.67 + 2.59 = 3.26t 故配制5t软化点为 85的石油沥青,需10号石油沥青3.26 t, 30号石油沥青1t, 60乙石油沥青0.74t,1、什么叫防水材料,答:能防止雨水、雪水、地下水等对建筑物和

59、 各种构筑物的渗透、渗漏和侵蚀的材料,2、防水材料有哪些种类,低档,逐步淘汰,中档,应用最多,高档,发展方向,木材基本知识,1.树木分类 树木按特征可分为针叶树和阔叶树,针叶林,阔叶林,二、木材的构造,宏观构造 横切面: 年轮、髓心、髓线; 弦切面 径切面 微观构造 管状细胞 细胞壁、细胞腔 细胞壁由纤维素、半纤维素和木质素组成。 木质素将纤维素和半纤维素粘结在一起。 针叶树由管胞和髓线等组成; 阔叶树由木纤维、导管和髓线组成,物理性质,木材的含水率 (1)自由水 存在于细胞腔内和细胞间隙中的水。其含量影响木材的表观密度、燃烧性和保存性和抗腐蚀性。 (2)吸附水 被吸附在细胞壁内细纤维间的水,

60、其含量影响木材的胀缩和强度 (3)化合水 木材化学组成中的结合水,对性能无大影响,木材的含水率 (4)纤维饱和点含水率 细胞壁吸附水饱和,而细胞腔和细胞间隙中的自由水为零时的含水率。 当含水率大于纤维饱和点含水率时,含水量的变化对强度和胀缩无影响; 当含水率小于纤维饱和点含水率时,含水率的变化则会引起强度和胀缩的变化。 (5)平衡含水率 在一定温度和湿度环境下,木材的含水率与周围大气环境处于平衡状态,此时的含水率为平衡含水率,木材的湿胀与干缩 原因:由于细胞壁中吸附水的增多或减少,导致细胞壁中的细纤维之间的距离发生变化,而造成木材的体积湿胀干缩。 大小:干燥时,同一木材的干燥值, 弦向最大,6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论