初二轴对称习题与答案_第1页
初二轴对称习题与答案_第2页
初二轴对称习题与答案_第3页
初二轴对称习题与答案_第4页
初二轴对称习题与答案_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一选择题(共6小题)1如图,O是ABC的两条垂直平分线的交点,BAC=70,则BOC=()A120B125C130D1402如图,等边ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则FAE+AEF的度数是()A60B110C120D1353如图,等腰RtABC中,AB=AC,A=90,点D为BC边的中点,E、F分别在AB、AC上,且EDFD,EGBC于G点,FHBC于H点,下列结论:DE=DF;AE+AF=AB;S四边形AEDF=SABC;EG+FH=BC其中正确结论的序号是()A只有B只有C只有D4如图所示,ABC是等边三角形,AQ=PQ,PRAB于R点,

2、PSAC于S点,PR=PS,则四个结论:点P在A的平分线上;AS=AR;QPAR;BRPQSP,正确的结论是()AB只有,C只有D只有5如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:AD=BE;PQAE;AP=BQ;DE=DP其中正确的是()A只有B只有C只有D只有6如图,ABC,ACB的平分线相交于F,过点F作DEBC,交AB于D,交AC于E,连接AF,那么下列结论正确的是()BDF,CEF都是等腰三角形;BFC=90+BAC;ADE的周长为AB+AC;AF平分BACAB

3、CD二填空题(共2小题)7如图,BAC=30,AD平分BAC,DEAB于E,DFAB,已知AF=4cm,则DE=_8如图,D为等边三角形ABC内一点,AD=BD,BP=AB,DBP=DBC,则BPD=_度三解答题(共10小题)9如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A、B两点,并交ST于点C求证:10在ABC中,点P为BC的中点(1)如图1,求证:AP(AB+AC);(2)延长AB到D,使得BD=AC,延长AC到E,使得CE=AB,连接DE如图2,连接BE,若BAC=60,请你探究线段BE与线段AP之间的数量关系写出你的结论,并加以证明;请在图3中证

4、明:BCDE11如图,在四边形ABCD中,已知BAD=60,ABC=90,BCD=120,对角线AC,BD交于点S,且DS=2SB,P为AC的中点求证:(1)PBD=30;(2)AD=DC12如图,ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G求证GD=GE13如图,ABC中,BDAC于点D,点F为BC边上的中点,点E在AB边上,若EF=DF,判断CE与AB的位置关系,并说明理由14如图,在等腰RtABC中,ACB=90,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF(1)求证:ADFC

5、EF(2)试证明DFE是等腰直角三角形15如图,AB=AC,E在线段AC上,D在AB的延长线上,且有BD=CE,连DE交BC于F,过E作EGBC于G,求证:FG=BF+CG16如图,ABC是等边三角形,D是三角形外一动点,满足ADB=60,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明17已知,在ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,MON=A=45(1)如图1,若点M、N分别在

6、边AC、BC上,求证:CN+MN=AM;(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明)18已知,如图,BD是ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想A的度数,并证明;(2)若BC=BA+CD,求A的度数?(3)若A=100,求证:BC=BD+DA一选择题(共6小题)1如图,O是ABC的两条垂直平分线的交点,BAC=70,则BOC=()A120B125C130D140考点:线段垂直平分线的性质。 专题:计算题。分析:根据线段垂直平分线性质,OA=OB=OC根据等腰三角形性质和三角形内角和定理,先求

7、出OBC+OCB,再求BOC解答:解:O是ABC的两条垂直平分线的交点,OA=OB=OC,OAB=OBA,OAC=OCA,OBC=OCBBAC=70,OBA+OCA=70,OBC+OCB=40BOC=18040=140故选D点评:此题考查了线段垂直平分线性质、等腰三角形性质、三角形内角和定理等知识点,渗透了整体求值的思想方法,难度不大2如图,等边ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则FAE+AEF的度数是()A60B110C120D135考点:等边三角形的性质。 专题:几何图形问题。分析:FAE+AEF可转化为FAE+EBC+C,由EBC=BAD,

8、所以又可转化为FAE+BAD+C,进而可求解解答:解:在等边ABC中,ABC=C=60,AB=BC,又BD=CE,ABDBCE,BAD=CBE,FAE+AEF=FAE+EBC+C=FAE+BAD+C=60+60=120,故选C点评:题中重点在于由BAD=CBE而得FAE+EBC+C=FAE+BAD+C的过程,即角的转化3如图,等腰RtABC中,AB=AC,A=90,点D为BC边的中点,E、F分别在AB、AC上,且EDFD,EGBC于G点,FHBC于H点,下列结论:DE=DF;AE+AF=AB;S四边形AEDF=SABC;EG+FH=BC其中正确结论的序号是()A只有B只有C只有D考点:等腰三角

9、形的性质;全等三角形的判定与性质。 分析:考查直角三角形及等腰三角形的性质及判定问题,利用全等三角形判断线段相等,例如在中,可求解RtEGDRtDHF,同样后面几问也都可用全等解答解答:解:如图所示,DEDF,EDG+FDH=90EDG+GED=90GED=FDH,RtEGDRtDHF,DE=DF,正确;连接AD,由得,DE=DF,DC=AD,FDC=ADE,可证AEDCFD,FC=AE,AE+AF=AB,正确,BE=AF,CAD=B=45,AD为公共边,ADFDEB,又AEDCFD,也正确,中由得GD=FH,又B=45BG=EG,EG+FH=BC,正确都正确,故选D点评:熟练掌握等腰三角形及

10、直角三角形的性质,能够通过全等求角相等,线段相等4如图所示,ABC是等边三角形,AQ=PQ,PRAB于R点,PSAC于S点,PR=PS,则四个结论:点P在A的平分线上;AS=AR;QPAR;BRPQSP,正确的结论是()AB只有,C只有D只有考点:等边三角形的性质;全等三角形的判定与性质。 分析:考查等边三角形的性质,在等边三角形中,角平分线即为中线,也为垂线,然后再利用全等,角相等进行判断解答:解:ABC是等边三角形,PRAB,PSAC,且PR=PS,P在A的平分线上,正确;由可知,PB=PC,B=C,PS=PR,BPRCPS,AS=AR,正确;AQ=PQ,PQC=2PAC=60=BAC,P

11、QAR,正确;由得,PQC是等边三角形,PQSPCS,又由可知,BRPQSP,也正确都正确,故选A点评:熟练掌握等边三角形的性质5如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:AD=BE;PQAE;AP=BQ;DE=DP其中正确的是()A只有B只有C只有D只有考点:全等三角形的判定与性质;等边三角形的性质。 专题:动点型。分析:利用三角形全等,得到结论,利用排除法即可求解解答:解:等边ABC和等边CDE,AC=BC,CD=CE,ACB=DCE=60,ACB+BCD=DCE+

12、BCD,即ACD=BCE,ACDBCE(SAS),AD=BE成立,排除C,由(1)中的全等得CBE=DAC,又ACB=DCE=60,BCD=60,即ACP=BCQ,又AC=BC,CQBCPA(ASA),CP=CQ,又PCQ=60可知PCQ为等边三角形,PQC=DCE=60,PQAE成立,排除D,由CQBCPA得AP=BQ成立,排除A故选B点评:作为选择题出现,应掌握这类型题基本的做题思路,判断出两对三角形全等,中间的三角形为等边三角形等6如图,ABC,ACB的平分线相交于F,过点F作DEBC,交AB于D,交AC于E,连接AF,那么下列结论正确的是()BDF,CEF都是等腰三角形;BFC=90+

13、BAC;ADE的周长为AB+AC;AF平分BACABCD考点:等腰三角形的性质;三角形内角和定理;角平分线的性质。 分析:根据平分线的性质、平行线的性质,借助于等量代换可求出DBF=DFB,即BDF是等腰三角形,同理CEF都是等腰三角形;利用两次三角形的内角和,以及平分线的性质,进行等量代换,可求的BFC和BAC之间的关系式;由可得ADE的周长为AB+AC;三角形的三条角平分线交于一点,可知AF平分BAC解答:解:BF是ABC的角平分线,ABF=CBF,又DEBC,CBF=DFB,DB=DF即BDF是等腰三角形,同理ECF=EFC,EF=EC,BDF,CEF都是等腰三角形;在ABC中,BAC+

14、ABC+ACB=180(1)在BFC中CFB+FBC+FCB=180即CFB+ABC+ACB=180(2)(2)2(1)得BFC=90+BAC;BDF,CEF都是等腰三角形BD=DF,EF=EC,ADE的周长=AD+DF+EF+AE=AD+BD+AE+EC=AB+AC;F是ABC,ACB的平分线的交点第三条平分线必过其点,即AF平分BAC故选C点评:本题考查了等腰三角形的性质及角平分线的性质,以及三角形内角和定理解答,涉及面较广,需同学们仔细解答二填空题(共2小题)7如图,BAC=30,AD平分BAC,DEAB于E,DFAB,已知AF=4cm,则DE=2cm考点:全等三角形的判定与性质;平行线

15、的性质;角平分线的性质;等腰三角形的判定。 专题:计算题。分析:由角平分线的定义和平行线的性质易得DF=AF=4m,DFC=BAC=30,作DGAC于G,根据角平分线的性质可得,DG=DE,在RtFDG中,易得DG=DF=2cm,即可求得DE解答:解:作DGAC于G,AD平分BAC,BAD=CAD,DE=DG,DFAB,ADF=BAD,DFC=BAC=30,ADF=CAD,DF=AF=4m,RtFDG中,DG=DF=2cm,DE=2cm故答案为:2cm点评:此题主要考查角平分线、平行线的性质和直角三角形中30锐角所对直角边等于斜边的一半,作辅助线是关键8如图,D为等边三角形ABC内一点,AD=

16、BD,BP=AB,DBP=DBC,则BPD=30度考点:等边三角形的性质。 专题:几何图形问题。分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可解答:解:作AB的垂直平分线,ABC为等边三角形,ABD为等腰三角形;AB的垂直平分线必过C、D两点,BCE=30;AB=BP=BC,DBP=DBC,BD=BD;BDCBDP,所以BPD=30故应填30点评:此题难度不大,解答此题的关键是作出辅助线,再利用等边三角形的性质求解三解答题(共10小题)9如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A、B两点,并交ST于点C求证:考点:切割线定理

17、;勾股定理;相交弦定理。 专题:证明题。分析:根据C、E、O、D四点共圆,根据切割线定理可得:PCPE=PDPO,并且可以证得RtSPDRtOPS,即可证得PS2=PDPO,再根据切割线定理即可求解解答:证明:连PO交ST于点D,则POST;连SO,作OEPB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PCPE=PDPO又因为RtSPDRtOPS所以即PS2=PDPO而由切割线定理知PS2=PAPB所以即点评:本题主要考查了切割线定理以及三角形相似的证明,注意对比例式的变形是解题关键10在ABC中,点P为BC的中点(1)如图1,求证:AP(AB+AC);(2)延长AB到D,使得B

18、D=AC,延长AC到E,使得CE=AB,连接DE如图2,连接BE,若BAC=60,请你探究线段BE与线段AP之间的数量关系写出你的结论,并加以证明;请在图3中证明:BCDE考点:平行四边形的判定与性质;三角形三边关系;全等三角形的判定与性质;等边三角形的性质;三角形中位线定理。 专题:分类讨论。分析:(1)可通过构建平行四边形求解;延长AP至H,使PH=AP;则AH、BC互相平分,四边形ABHC是平行四边形;在ACH中,由三角形三边关系定理知:AHAC+CH,而HC=AB,AH=2AP,等量代换后即可证得所求的结论;(2)可按照(1)题的思路求解;过B作AE的平行线,交DE于H,连接AH、CH

19、;易知AD=AE,若BAC=60,则ADE是等边三角形,易证得DBH也是等边三角形,此时DB=BH=AC,则四边形ABHC的一组对边平行且相等,则四边形ABHC是平行四边形;由此可证得P是平行四边形ABHC对角线的交点,且AH=2AP;下面可通过证DBEDHA得出AH=DE,从而得出DE=2AP的结论;分两种情况:一、AB=AC时,由题意易知AB=AC=BD=CE,则BC是三角形ADE的中位线,此时DE=2BC;二、ABAC时,仿照的思路,可以BC、BD为边作平行四边形DBCG,连接GE;易证得ABCCEG,则AB=GE;而根据平行四边形的性质易知BC=DG,那么在等腰DGE中,DG=GE,根

20、据三角形三边关系定理知:DG+GEDE,即2BCDE;综合上述两种情况即可证得所求的结论解答:(1)证明:延长AP至H,使得PH=AP,连接BH、HC,PH;BP=PC;四边形ABHC是平行四边形;AB=HC;在ACH中,AHHC+AC;2APAB+AC;即(2)答:BE=2AP证明:过B作BHAE交DE于H,连接CH、AH;1=BAC=60;DB=AC,AB=CE,AD=AE,AED是等边三角形,D=1=2=AED=60;BDH是等边三角形;BD=DH=BH=AC;四边形ABHC是平行四边形;点P是BC的中点,点P是四边形ABHC对角线AH、BC的交点,点A,P,H共线,AH=2AP;在AD

21、H和EDB中,;ADHEDB;AH=BE=2AP;证明:分两种情况:)当AB=AC时,AB=AC=DB=CE;BC=;)当ABAC时,以BD、BC为一组邻边作平行四边形BDGC(如图)DB=GC=AC,BAC=1,BC=DG,AB=CE;ABCCEG;BC=EG=DG;在DGE中,DG+GEDE;2BCDE,即;综上所述,BC点评:此题考查了三角形三边关系定理、等腰三角形的性质、平行四边形的性质、全等三角形的判定和性质,综合性强,难度较大11如图,在四边形ABCD中,已知BAD=60,ABC=90,BCD=120,对角线AC,BD交于点S,且DS=2SB,P为AC的中点求证:(1)PBD=30

22、;(2)AD=DC考点:四点共圆;全等三角形的判定与性质。 专题:证明题。分析:(1)连接PD,四边形ABCD中,已知BAD=60,ABC=90,BCD=120,根据内角和定理可求ADC=90,则A、B、C、D四点共圆,对角线AC为直径,P点为圆心,PBD为等腰三角形,根据圆周角定理BPD=2BAD,可证PBD=30;(2)作SNBP于点N,由(1)的结论可知SN=SB,利用线段之间个关系证明MS=SB=SN,从而判断RtPMSRtPNS,得出MPS=NPS=30,由圆周角定理得PAB=NPS,则DAC=BADPAB=45,又AC为直径,故AD=DC解答:证明:(1)由已知得ADC=90,从而A,B,C,D四点共圆,AC为直径,P为该圆的圆心,作PMBD于点M,知M为BD的中点,所以BPM=BAD=60,从而PBM=30;(2)作SNBP于点N,则又,RtPMSRtPNS,MPS=NPS=30,又PA=PB,所以,故DAC=45=DCA,所以AD=DC点评:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论