版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法 合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、 等比数列求和公式:自然数方幂和公式:3、 4、5、例 求和1x2x4x6x2n+4(x0)解:x0该数列是首项为1,公比为x2的等比数列而且有n+3项当x21
2、即x1时 和为n+3评注: (1)利用等比数列求和公式当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨论 (2)要弄清数列共有多少项,末项不一定是第n项 对应高考考题:设数列1,(1+2),(1+2+),的前顶和为,则的值。 二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中 an 、 bn 分别是等差数列和等比数列. 求和时一般在已知和
3、式的两边都乘以组成这个数列的等比数列的公比;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。例 求和:()解:由题可知,的通项是等差数列2n1的通项与等比数列的通项之积设. (设制错位)得 (错位相减)再利用等比数列的求和公式得: 注意、1 要考虑 当公比x为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。对应高考考题:设正项等比数列的首项,前n项和为,且。()求的通项; ()求的前n项和。三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数
4、列相加,就可以得到n个.例 求证:证明: 设. 把式右边倒转过来得 (反序) 又由可得 . +得 (反序相加) 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列的通项公式为,其中中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。例:求数列的前n项和;分析:数列的通项公式为,而数列分别是等差数列、等比数列,求和时一般用分组结合法;解 :因为,所以 (分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此 五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项
5、法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1) (2)(3) (4)(5)例 求数列的前n项和.解:设 (裂项)则 (裂项求和) 小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。 注意: 余下的项具有如下的特点 1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。 练习 在数列an中,又,求数列bn的前n项的和. 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.例 在各
6、项均为正数的等比数列中,若的值.解:设由等比数列的性质 (找特殊性质项)和对数的运算性质 得 (合并求和) 10数列的求和方法多种多样,它在高考中的重要性也显而易见。我们的学生在学习中必须要掌握好几种最基本的方法,在解题中才能比较容易解决数列问题。数列通项公式的十种求法一、公式法例1 已知数列满足,求数列的通项公式。二、累加法例2 已知数列满足,求数列的通项公式。例3 已知数列满足,求数列的通项公式。例4 已知数列满足,求数列的通项公式。三、累乘法例5 已知数列满足,求数列的通项公式。例6 (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。四、待定系数法例7 已知数列满足,求数列的通项公式。例8 已知数列满足,求数列的通项公式。例9 已知数列满足,求数列的通项公式。五、对数变换法例10 已知数列满足,求数列的通项公式。六、迭代法例11 已知数列满足,求数列的通项公式。七、数学归纳法例12 已知数列满足,求数列的通项公式。八、换元法例13 已知数列满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 干部能力 课件
- 《电商图片处理基础》高职全套教学课件
- 人教版手指课件
- 第六讲 欢度节日(看图写话教学)-二年级语文上册(统编版)
- 2024年辽宁省中考生物真题卷及答案解析
- 幼儿园小班音乐《合拢放开》教案
- 西京学院《影视作品分析》2021-2022学年第一学期期末试卷
- 西京学院《数据挖掘》2022-2023学年期末试卷
- 人教版八年级物理《光沿直线传播》
- 西京学院《继电保护装置》2021-2022学年期末试卷
- 2024年公安智能外呼项目合同
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年学校食堂管理工作计划(六篇)
- 体育赛事组织服务协议
- 天车工竞赛考核题
- 民办非企业单位理事会制度
- 临床输血的护理课件
- 民生银行在线测评真题
- 人教版(PEP)小学六年级英语上册全册教案
- 2024年木屑购销合同范本
评论
0/150
提交评论