能源装置幻灯片_第1页
能源装置幻灯片_第2页
能源装置幻灯片_第3页
能源装置幻灯片_第4页
能源装置幻灯片_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,液压与气压传动,第二章 能源装置,2,本章提要,本章主要内容为,液压泵的工作原理与性能参数,齿轮式、叶片式、柱塞式液压泵,通过本章的学习,要求掌握这几种泵的工作原理(泵是如何吸油、压油和配流的)、结构特点、及主要性能特点;了解不同类型的泵之间的性能差异及适用范围,为日后正确选用奠定基础,3,2.1 液压泵概述,泵的符号,4,由此可见,泵是靠密封工作腔的容积变化进行工作的,2.1.1 容积式泵工作原理,5,液压泵工作的必需条件: (1)必须有一个大小能作周期性变化的封闭容积; (2)必须有配流动作,即 封闭容积加大时吸入低压油 封闭容积减小时排出高压油 (3)高低压油不得连通,液压泵液压传动

2、系统中的能量转换元件,液压泵由原动机驱动,把输入的机械能转换成为油液的压力能,再以压力、流量的形式输入到系统中去,它是液压系统的动力源,6,根据工作腔的容积变化而进行吸油和排油是液压泵的共同特点,因而这种泵又称为容积泵,液压泵按其在单位时间内所能输出油液体积能否调节而分为定量泵和变量泵两类;按结构形式可以分为齿轮式、叶片式和柱塞式三大类,从工作过程可以看出,在不考虑漏油的情况下,液压泵在每一工作周期中吸入或排出的油液体积只取决于工作构件的几何尺寸,如柱塞泵的柱塞直径和工作行程,7,2.1.2 液压泵的基本性能参数,液压泵的基本性能参数主要是指液压泵的压力、排量、流量、功率和效率等,工作压力:指

3、泵实际工作时的压力。泵指输出压力;实际工作压力取决于相应的外负载,额定压力:泵在额定工况条件下按试验标准规定的连续运转的最高压力,超过此值就是过载,每弧度排量 :泵每转一弧度所排出(吸入)液体的体积,也称角排量,每转排量 :无内外泄漏时,泵每转一周所排出(吸入)液体的体积,最高允许压力:泵在短时间内允许超载使用的极限压力,8,理论流量 :无内外泄漏时,单位时间内泵排出(吸入)液体的体积。泵的流量为其转速与排量的乘积,即,额定流量 :在额定转速和额定压力下泵输出的流量,也是按试验标准规定必须保证的流量。由于泵存在内泄漏,油液具有压缩性,所以额定流量和理论流量是不同的,功率和效率:液压泵由原动机驱

4、动,输入量是转矩 和角速度 ,输出量是液体的压力 和流量 ;如果不考虑液压泵在能量转换过程中的损失,则输出功率等于输入功率,也就是它们的理论功率是,9,式中,液压泵的压力和理论流量,实际上,液压泵在能量转换过程中是有损失的,因此输出功率小于输入功率,功率损失可以分为容积损失和机械损失两部分,容积损失是因泄漏、气穴和油液在高压下压缩等造成的流量损失,机械损失是指因摩擦而造成的转矩上的损失,10,对液压泵来说,输出压力增大时,泵实际输出的流量 减小。设泵的流量损失 为,则,泵的容积损失可用容积效率 来表征,泵容积损失,11,泵容积损失,t,12,机械损失是指因摩擦而造成的转矩上的损失,对液压泵来说

5、,泵的驱动转矩总是大于其理论上需要的驱动转矩,设转矩损失为 ,理论转矩为 ,则泵实际输入转矩为 ,用机械效率 来表征泵的机械损失,则,机械损失,13,泵的机械损失,液压泵的总效率 等于其容积效率和机械效率的乘积,液压泵的容积效率和机械效率在总体上与油液的泄漏和摩擦副的摩擦损失有关,14,22 齿轮泵,齿轮泵是一种常用的液压泵,它的主要优点是结构简单,制造方便,价格低廉,体积小,重量轻,自吸性好,对油液污染不敏感,工作可靠;其主要缺点是流量和压力脉动大,噪声大,排量不可调,齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机械、工程机械和农林机械等各个行业,齿轮泵按照其啮合形式的不同,有外啮合和内啮合

6、两种,外啮合齿轮泵应用较广,内啮合齿轮泵则多为辅助泵,15,221 外啮合齿轮泵的结构及工作原理,外啮合齿轮泵的工作原理; 排量、流量; 外啮合齿轮泵的流量脉动; 外啮合齿轮泵的问题和结构特点,16,泵主要由主、从动齿轮,驱动轴,泵体及侧板等主要零件构成,图2.3 外啮合齿轮泵的工作原理 1泵体;2 主动齿轮;3 从动齿轮,泵体内相互啮合的主、从动齿轮与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将左、右两腔隔开,形成了吸、压油腔,17,当齿轮按图示方向旋转时,右侧吸油腔内的轮齿脱离啮合,密封腔容积不断增大,构成吸油并被旋转的轮齿带入左侧的压油腔,18,左侧压油腔内的轮齿不断进入啮合,使密封

7、腔容积减小,油液受到挤压被排往系统,这就是齿轮泵的吸油和压油过程,工作原理,19,222 齿轮泵的流量和脉动率,外啮合齿轮泵的排量可近似看作是两个啮合齿轮的齿谷容积之和。若假设齿谷容积等于轮齿体积,则当齿轮齿数为 ,模数为 ,节圆直径为 ,有效齿高为 ,齿宽为时 ,根据齿轮参数计算公式有 , ,齿轮泵的排量近似为,实际上,齿谷容积比轮齿体积稍大一些,并且齿数越少误差越大,因此,在实际计算中用3.333.50来代替上式中值,齿数少时取大值,由此得齿轮泵的输出流量为,20,大,21,齿轮泵的流量脉动,若用 、 来表示最大、最小瞬时流量, 表示平均流量,则流量脉动率为,上式是齿轮泵的平均流量。实际上

8、,在齿轮啮合过程中,排量是转角的周期函数,因此瞬时流量是脉动的。脉动的大小用脉动率表示,流量脉动率是衡量容积式泵流量品质的一个重要指标,22,在容积式泵中,齿轮泵的流量脉动最大,并且齿数愈少,脉动率愈大,这是外啮合齿轮泵的一个弱点,流量脉动会直接影响到系统工作的平稳性,引起压力脉动,使管路系统产生振动和噪声,齿轮泵的流量脉动,23,2.2.3.1 困油的现象,齿轮啮合时的重叠系数必大于1,故有一部分油液困在两对轮齿啮合时所形成的封闭油腔之内,这个密封容积的大小随齿轮转动而变化,形成困油,223 齿轮泵的结构特点,24,困油现象 轮齿间密封容积周期性的增大减小。 受困油液受到挤压而产生瞬间高压,

9、密封容腔的受困油液若无油道与排油口相通,油液将从缝隙中被挤出,导致油液发热,轴承等零件也受到附加冲击载荷的作用; 若密封容积增大时,无油液的补充,又会造成局部真空,使溶于油液中的气体分离出来,产生气穴,25,图2.5 齿轮泵的困油现象及消除措施,容积减小时 与压油侧相通,容积增大时 与吸油侧相通,26,27,2.2.3.2 径向力不平衡,在齿轮泵中,油液作用在轮外缘的压力是不均匀的,从低压腔到高压腔,压力沿齿轮旋转的方向逐齿递增,因此,齿轮和轴受到径向不平衡力的作用,28,危害: 压力越高,径向不平衡力越大,使泵轴弯曲,导致致齿顶与泵体摩擦加剧,使定子偏磨,加速轴承的磨损,降低轴承使用寿命,使

10、泵不能正常工作,改善措施: 1)缩小压油口,以减小压力油作用面积; 2)扩大泵体内高压区径向间隙; 3)开压力平衡槽,但泄漏量增大,容积效率减小,29,2.2.3.3 齿轮泵的泄漏通道及端面间隙的自动补偿,齿轮泵压油腔的压力油可通过三条途经泄漏到吸油腔去,在这三类间隙中,端面间隙的泄漏量最大,压力越高,由间隙泄漏的液压油就愈多,30,为了提高齿轮泵的压力和容积效率,实现齿轮泵的高压化,需要从结构上来取措施,对端面间隙进行自动补偿,通常采用的自动补偿端面间隙装置有:浮动轴套式和弹性侧板式两种,31,2.3 叶片泵,单作用叶片泵,双作用叶片泵,三维结构,32,2.3.1 单作用叶片泵,2.3.1.

11、1 工作原理,图2.7为单作用叶片泵的工作原理。 泵由转2、定子3、叶片4和配流盘等件组成,图2.7单作用叶片泵工作原理 1压油口;2 转子;3 定子;4 叶片;5 吸油口,定子,33,定子的内表面是圆柱面,转子和定子中心之间存在着偏心,叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及叶片根部油压力作用下,叶片顶部贴紧在定子内表面上,于是两相邻叶片、配油盘、定子和转子便形成了一个密封的工作腔,泵在转子转一转的过程中,吸油、压油各一次,故称单作用叶片泵。 转子单方向受力,轴承负载大。 改变偏心距,可改变泵排量,形成变量叶片泵。 叶片底部在压油区同压油腔,吸油区同吸油腔,叶片甩出靠离心力,34

12、,2.3.1.2 单作用叶片泵的平均流量计算,35,2.3.1.3 单作用叶片泵和变量原理,变量叶片泵有内反馈式和外反馈式两种,1) 限压式内反馈变量叶片泵,内反馈式变量泵操纵力来自泵本身的排油压力,内反馈式变量叶片泵配流盘的吸、排油窗口的布置如图2.9,图2.9 变量原理 1最大流量调节螺钉;2 弹簧预压缩量调节螺钉;3 叶片;4 转子;5 定子,36,由于存在偏角 ,排油压力对定子环的作用力可以分解为垂直于轴线 的分力F1及与之平行的调节分力F2,调节分力F2与调节弹簧的压缩恢复力、定子运动的摩擦力及定子运动的惯性力相平衡。定子相对于转子的偏心距、泵的排量大小可由力的相对平衡来决定,变量特

13、性曲线如图所示,o,37,当泵的工作压力所形成的调节分力F2小于弹簧预紧力时,泵的定子环对转子的偏心距保持在最大值,不随工作压力的变化而变,如上图中AB段,思考:AB段倾斜的原因,38,图2.10,当泵的工作压力P超过PB后,调节分力F2大于弹簧预紧力,使定子环向减小偏心距的方向移动,泵的排量开始下降(变量,改变弹簧预紧力可以改变曲线的B点;调节最大流量调节螺钉,可以调节曲线的A点;更换弹簧,可改变弹簧刚度,使BC段斜率变化,39,2) 限压式外反馈变量叶片泵,图2.11外反馈限压式变量叶片泵 1转子;2 弹簧;3 定子;4 滑块滚针支承;5 反馈柱塞;6 流量调节螺钉,40,当柱塞作用力小于

14、弹簧预压缩力时,定子偏心为设定值,流量为此状态下最大值,当泵压力升高时,克服了弹簧预压缩力,定子开始移动,偏心减小,流量下降,当泵压力升高到偏心近似为0,泵流量下降为0,注意:内反馈和 外反馈的区别,41,2.3.2 双作用叶片泵,2.3.2.1 工作原理,双作用叶片泵的原理和单作用叶片泵相似,不同之处只在于定子内表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线组成,且定子和转子是同心的,双作用叶片泵,42,图中,当转子顺时针方向旋转时,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区将吸、压油区隔开,图2.12 双

15、作用叶片泵工作原理 1定子;2 压油口;3 转子;4 叶片;5 吸油口,43,这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。 叶片底部始终通高压油,图2.12 双作用叶片泵工作原理 1定子;2 压油口;3 转子;4 叶片;5 吸油口,44,2.3.2.2 双作用叶片泵的平均流量计算,当两叶片从a,b位置转c,d位置时,排出容积为M的油液;从c,d转到e,f 时,吸进了容积为M的油液。从e,f 转到g,h时又排出了容积为M的油液;再从g,h转回到a,b时又吸进了容积为M的油液,图2.13 双作用叶片泵平均流量计算原理,45,转子转一周,两叶片间吸油两次,排油

16、两次,每次容积为M;当叶片数为Z时,转动一周所有叶片的排量为2Z个M容积,若不计叶片几何尺度,此值正好为环行体积的两倍。故泵的排量为,平均流量为,46,考虑叶片厚度影响后,双作用叶片泵精确流量计算公式为,2.3.2.3 叶片泵的高压化趋势,随着技术的发展,双作用叶片的最高工作压力已达成2030MPa,这是因为双作用叶片泵转子上的径向力基本上是平衡的,不像齿轮泵和单作用叶片泵那样,工作压力的提高会受到径向承载能力的限制; 叶片泵工作压力提高的主要限制条件是叶片和定子内表面的磨损,47,为了解决定子和叶片的磨损,要采取措施减小在吸油区叶片对定子内表面的压紧力,目前采取的主要结构措施有以下几种,1)

17、双叶片结构,各转子槽内装有两个经过倒角的叶片。两叶片的倒角部分构成从叶片底部通向头部的V型油道,因而作用在叶片底、头部的油压力相等,合理设计叶片头部的形状,使叶片头部承压面积略小于叶片底部承压面积。这个承压面积的差值就形成叶片对定子内表面的接触力,48,2)母子叶片结构,图2.16母子叶片结构,49,叶片槽中装有母叶片和子叶片,母、子叶片能自由地相对滑动,正确选择子叶片和母叶片的宽度尺寸之比可使母叶片和定子的接触压力适当; 转子上的压力平衡孔使母叶片的头部和底部液压力相等,泵的排油压力通到母、子叶片之间的中间压力腔; 叶片作用在定子上的力为,50,3)阶梯叶片结构,叶片做阶梯形式,转子上的叶片

18、槽亦具有相应的形状。它们之间的中间油腔经配流盘上的槽与压力油相通,转子上的压力平衡油道把叶片头部的压力油引入叶片底部。这种结构由于叶片及槽的形状较为复杂,加工工艺性较差,应用较少,图2.17 1定子;2 转子;3 中间油腔;4 压力平衡油道,51,2.3.3 单双叶片泵 的特点比较,2.3.3.1 单作用叶片的特点,叶片沿旋转方向向后倾斜,转子承受径向液压力,单作用叶片泵转子上的径向液压力不平衡,轴承负荷较大。这使泵的工作压力和排量的提高均受到限制,叶片底部分别通吸压油叶片顶、底受力平衡,故叶片向外运动主要靠旋转时的惯性力,叶片后倾利于叶片在槽内甩出,52,2.3.3.2 双作用叶片泵的结构特

19、点,定子过度曲线,定子内表面的曲线由四段圆弧和四段过渡曲线组成,应使叶片转到过渡曲线和圆弧段交接点处的加速度突变不大,以减小冲击和噪声,同时,还应使泵的瞬时流量的脉动最小,53,减小叶片对定子的作用力 径向力平衡 压力升高不受以上因素影响,但因叶片与定子内表面接触,才能形成密封容积,叶片底 在压油区,顶底压力平衡 部通压力油 在吸油区,顶部低压,底部高压,致使叶片作用于定子表面的力很大,使磨损加剧,寿命降低,成为限制双作用叶片泵压力提高的主要因素,所以应采取措施减小吸油区叶片对定子内表面的作用力,54,叶片安放角,设置叶片安放角有利于减小叶片折断的可能性。为了保证叶片顺利的从叶片槽滑出,减小叶

20、片的压力角,根据过渡曲线的动力学特性,双作用叶片泵转子的叶片槽常做成沿旋转方向向前倾斜一个安放角。当叶片有安放角时,叶片泵就不允许反转,55,双作用叶片泵的 叶片“前倾,56,2.3.3.3 双联叶片泵 组成: 两个双作用叶片泵的主体装在同一泵体内,同轴驱动,共用一个吸油口,各自有自己的出油口。 分开使用,如两个独立的叶片泵,但结构紧凑 工作原理 合并使用,可增大流量 轻载快速时,双泵同时供油 应用情况 重载慢速时,小泵供油,大泵卸荷 特点: 降低功率损耗,减少油液发热,57,2.4 柱塞泵,柱塞泵是通过柱塞在柱塞孔内往复运动时密封工作容积的变化来实现吸油和排油的。柱塞泵的特点是泄漏小、容积效

21、率高,可以在高压下工作,分为轴向和径向柱塞泵,轴向柱塞泵可分为斜盘式和斜轴式两大类,58,斜盘1和配油盘4不动,传动轴5带动缸体3、柱塞2一起转动。 传动轴旋转时,柱塞2在其沿斜盘自下而上回转的半周内逐渐向缸体外伸出,使缸体孔内密封工作腔容积不断增加,油液经配油盘4上的配油窗口a吸入,斜盘1,柱塞2,缸体3,配油盘4,2.4.1 斜盘式轴向柱塞泵,吸油口,压油口,59,柱塞在其自上而下回转的半周内又逐渐向里推入,使密封工作腔容积不断减小,将油液从配油盘窗口b向外排出。 缸体每转一转,每个柱塞往复运动一次,完成一次吸油动作。 改变斜盘的倾角,就可以改变密封工作容积的有效变化量,实现泵的变量,60

22、,斜盘式轴向柱塞泵的排量和流量,如图所示,若柱塞数目为 ,柱塞直径为 ,柱塞孔分布圆直径为 ,斜盘倾角为 ,则泵的排量为,泵的输出流量为,61,实际上,柱塞泵的排量是转角的函数,其输出流量是脉动的。就柱塞数而言,柱塞数为奇数时的脉动率比偶数柱塞小,且柱塞数越多,脉动越小,故柱塞泵的柱塞数一般都为奇数,从结构工艺性和脉动率综合考虑,常取Z=7或Z=9,62,配流盘,缸体,斜盘,柱塞,2.4.1.2 斜盘式轴向柱塞的结构特点,1)结构,通轴结构,63,配流盘,缸体,斜盘,手动变量机械,柱塞,半轴结构,输入轴,壳体,回程盘,64,2.4.2 斜轴式轴向柱塞泵,传动轴5的轴线相对于缸体3有倾角 ,柱塞2与传动轴圆盘之间用相互铰接的连杆4相连。轴5旋转时,连杆4就带动柱塞2连同缸体3一起绕缸体轴线旋转,柱塞2同时也在缸体的柱塞孔内做往复运动,使密封腔容积不断发生增大和缩小的变化,通过配流盘1上的窗口 a 和 b 实现吸油和压油,图 2.21 1流盘;2 柱塞;3 缸体;4 连杆;5 传动轴;a 吸油窗口;b 压油窗口,65,与斜盘式泵相比较,斜轴式泵由于缸体所受的不平衡径向力较小,故结构强度较高可以有较高的设计参数,其缸体轴线与驱动轴的夹角 较大,变量范围较大;但外形尺寸较大,结构也较复

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论