版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、因式分解一、知识梳理1、因式分解的概念把一个多项式化为几个整式的积的形式,叫做把多项式因式分解.注:因式分解是“和差”化“积”,整式乘法是“积”化“和差”故因式分解与整式乘法之间是互为相反的变形过程,因些常用整式乘法来检验因式分解.2、提取公因式法把,分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式是除以m所得的商,像这种分解因式的方法叫做提公因式法.用式子表求如下:注:i 多项式各项都含有的相同因式,叫做这个多项式各项的公因式.ii 公因式的构成:系数:各项系数的最大公约数; 字母:各项都含有的相同字母; 指数:相同字母的最低次幂.3、运用公式法把乘法公式反过用,可以把某些
2、多项式分解因式,这种分解因式的方法叫做运用公式法.)平方差公式 注意:条件:两个二次幂的差的形式;平方差公式中的、可以表示一个数、一个单项式或一个多项式;在用公式前,应将要分解的多项式表示成的形式,并弄清、分别表示什么.)完全平方公式 注意:是关于某个字母(或式子)的二次三项式;其首尾两项是两个符号相同的平方形式;中间项恰是这两数乘积的2倍(或乘积2倍的相反数);使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成公式原型,弄清、分别表示的量. 补充:常见的两个二项式幂的变号规律:; (为正整数)4、十字相乘法借助十字叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘
3、法.对于二次项系数为l的二次三项式 寻找满足的,则有5、分组分解法定义:分组分解法,适用于四项以上的多项式,例如没有公因式,又不能直接利用分式法分解,但是如果将前两项和后两项分别结合,把原多项式分成两组。再提公因式,即可达到分解因式的目的。例如: =, 这种利用分组来分解因式的方法叫分组分解法. 原则:用分组分解法把多项式分解因式,关键是分组后能出现公因式或可运用公式.6、求根公式法:如果有两个根,那么二、典型例题及针对练习考点1 因式分解的概念例1、 在下列各式中,从左到右的变形是不是因式分解? ; ; ; .注:左右两边的代数式必须是恒等,结果应是整式乘积,而不能是分式或者是n个整式的积与
4、某项的和差形式.考点2 提取公因式法例2 ; 解:注:提取公因式的关键是从整体观察,准确找出公因式,并注意如果多项式的第一项系数是负的一般要提出“”号,使括号内的第一项系数为正.提出公因式后得到的另一个因式必须按降幂排列.补例练习1、; 考点3、运用公式法例3 把下列式子分解因式:; .解:注:能用平方差分解的多项式是二项式,并且具有平方差的形式.注意多项式有公因式时,首先考虑提取公因式,有时还需提出一个数字系数.例4把下列式子分解因式:; .解:注:能运用完全平方公式分解因式的多项式的特征是:有三项,并且这三项是一个完全平方式,有时需对所给的多项式作一些变形,使其符合完全平方公式.补例练习2
5、、; ; .注:整体代换思想:比较复杂的单项式或多项式时,先将其作为整体替代公式中字母.还要注意分解到不能分解为止.考点4、十字相乘法例5 ; .补例练习3、 考点5、分组分解法例6分解因式:(1); (2)(3)分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,。四项式一般采用“二、二”或“三、一”分组,五项式一般采用“三、二”分组,分组后再试用提公因式法、公式法或十字相乘法继续分解。答案:(1)(三、一分组后再用平方差) (2)(三、二分组后再提取公因式) (3)(三、二、一分组后再用十字相乘法) 综合探究创新例7 若是完全平方式,求的值.说明 根据完全平方公式特点求待定系数,熟练公式中的“、”便可自如求解.例8 已知,求的值.说明 将所求的代数式变形,使之成为的表达式,然后整体代入求值.例9 已知,求的值.说明 这类问题一般不适合通过解出、的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于与的式子,再整体代入求值.三、巩固练习课外练一、 填空题 1. 分解因式: .2. 分解因式: .3. 当时,的值是 .4. .5. 分解因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳大学《人物画创作》2023-2024学年第一学期期末试卷
- 能源公司通信布线施工合同
- 建筑装饰单包工施工合同
- 房地产开发临建房施工合同
- 家电卖场装饰施工合同
- 别墅建造合同样本
- 纪检监督员培训班
- 汽车站返聘退休调度员劳务合同
- 消防应急泵车租赁协议
- 智能监控工程承包合同
- 诊所消防安全应急方案
- 译林版一年级上册英语全册课件
- 中小学德育工作指南考核试题及答案
- 净现值NPV分析和总结
- 国网基建各专业考试题库大全-质量专业-中(多选题汇总)
- LTC流程介绍完整版
- 饲料加工系统粉尘防爆安全规程
- 一年级上册美术课件-第11课-花儿寄深情-▏人教新课标
- 植物的象征意义
- 夏商周考古课件 第5章 西周文化(1、2节)
- 二年级上册美术教案-7. 去远航 -冀教版
评论
0/150
提交评论