版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 学科教师辅导教案 学员姓名 年 级高三 辅导科目数 学授课老师课时数2h 第 次课授课日期及时段 2018年 月 日 : : 历年高考试题集锦圆锥曲线 1、(2016年四川)抛物线y2=4x的焦点坐标是( )(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)2、(2016年天津)已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为( )(A) (B)(C) (D)3、(2016年全国I卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )(A)(B)(C)(D)4、(2016年全国II卷)设F为抛物线C:y
2、2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=( )(A) (B)1 (C) (D)25、(2016年全国III卷)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )(A)(B)(C)(D)6、(2016年北京)已知双曲线 (a0,b0)的一条渐近线为2x+y=0,一个焦点为( ,0),则a=_;b=_.7、(2016年江苏)在平面直角坐标系xOy中,双曲线的焦距是_. 8、(2016年山东)已知双曲线E:=1(a0,b0)矩形ABCD的四个顶点在E
3、上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_9.(2015北京文)已知是双曲线()的一个焦点,则 10.(2015年广东文)已知椭圆()的左焦点为,则( )A B C D11.(2015年安徽文)下列双曲线中,渐近线方程为的是( )(A) (B) (C) (D)12、(2016年上海)双曲线的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.(1)若l的倾斜角为 ,是等边三角形,求双曲线的渐近线方程;13、(2016年四川)已知椭圆E:+=1(ab0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P(,)在椭圆E上。()求椭圆E的方程。14
4、、(2016年天津)设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.()求椭圆的方程;15、(2016年全国I卷)在直角坐标系中,直线l:y=t(t0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(I)求;(II)除H以外,直线MH与C是否有其它公共点?说明理由.16.(2015北京文)已知椭圆,过点且不过点的直线与椭圆交于,两点,直线与直线交于点()求椭圆的离心率;()若垂直于轴,求直线的斜率;17.(2015年安徽文)设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,满足直线OM的斜率为。学优高
5、考网(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB。18.(2015年福建文)已知椭圆的右焦点为短轴的一个端点为,直线交椭圆于两点若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )A B C D119.(2015年新课标2文)已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 20.(2015年陕西文)已知抛物线的准线经过点,则抛物线焦点坐标为( )A B C D21.(2015年陕西文科)如图,椭圆经过点,且离心率为.(I)求椭圆的方程;22.(2015年天津文)已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( )(
6、A) (B) (C) (D) 23(2013广东文)已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是( )A B C D24(2012沪春招) 已知椭圆则( ) (A)与顶点相同.(B)与长轴长相同. (C)与短轴长相同.(D)与焦距相等.25.(2012新标) 设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 26.(2013新标2文) 设椭圆C:1(ab0)的左、右焦点分别为F1、F2,P是C上的点,PF2F1F2,PF1F230,则C的离心率为()A. B. C. D.27.(2013四川文) 从椭圆1(ab0)上一点P向x轴作垂线,垂足恰为左焦点F
7、1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且ABOP(O是坐标原点),则该椭圆的离心率是() A. B. C. D.28(2014大纲)已知椭圆C:的左、右焦点为、,离心率为,过的直线交C于A、B两点,若的周长为,则C的方程为( )A B C D29(2012江西)椭圆(ab0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为_.30(2014广东)若实数k满足,则曲线与曲线的( )A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等31(2013湖北)已知,则双曲线:与:的( )A
8、实轴长相等 B虚轴长相等 C焦距相等 D离心率相等32.(2014天津理) 已知双曲线的一条渐近线平行于直线:,双曲线的一个焦点在直线上,则双曲线的方程为()(A) (B)(C) (D)33.(2013新标1) 已知双曲线:()的离心率为,则的渐近线方程为( ). . . .34.(2014新标1文)已知双曲线的离心率为2,则( )A. 2 B. C. D. 135.(2014新标1文) 已知抛物线C:的焦点为,是C上一点,则( )A. 1 B. 2 C. 4 D. 836.(2013新标1文) 为坐标原点,为抛物线的焦点,为上一点,若,则的面积为( )(A) (B) (C) (D)37.(2
9、013新标2文) 设为抛物线的焦点,过且倾斜角为的直线交于,两点,则 (A) (B) (C) (D)38.(2013新标2文)设抛物线C:y24x的焦点为F,直线l过F且与C交于A,B两点若|AF|3|BF|,则l的方程为()Ayx1或yx1 By(x1)或y(x1)Cy(x1)或y(x1) Dy(x1)或y(x1)39.(2017新课标1文)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则APF的面积为( )ABCD40.(2017新课标1文)设A、B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是 ( A )AB
10、CD41、(2017全国文,5)若a1,则双曲线y21的离心率的取值范围是()A(,) B(,2) C(1,) D(1,2)42(2017全国文,12)过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为() A. B2 C2 D343(2017全国文,11)已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay2ab0相切,则椭圆C的离心率为()A B C D44(2017天津文,5)已知双曲线1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A1 B1 Cy21 Dx2145(2017全国文,14)双曲线1(a0)的一条渐近线方程为yx,则a_.46、(2017北京文,10)若双曲线x21的离心率为,则实数m_.47、(2017全国理,16)已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|_.48、(2017新课标1文)设A,B为曲线C:y=上两点,A与B的横
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程图纸修正及施工协议书
- 统考版2024高考生物二轮复习专题八生物技术实践非常“组合4”主观题模拟真演练四含解析
- 2024年学校宿舍床采购与安装合同
- 网络文学版权转让及许可协议
- 2024年定制:房产交易代理人合同
- 2024年子公司自主经营合同范本
- Pseudolaric-Acid-A-Standard-生命科学试剂-MCE
- Prostaglandin-G2-生命科学试剂-MCE
- Praziquantel-Standard-生命科学试剂-MCE
- 作业设计与批改工作总结计划
- 中汇富能排矸场设计
- 2024年保安员证考试题库及答案(共160题)
- 2024年大学试题(财经商贸)-统计预测与决策考试近5年真题集锦(频考类试题)带答案
- 大学生职业生涯规划成品
- 主要负责人和安全生产管理人员安全培训课件初训修订版
- 人教版2024新版八年级全一册信息技术第1课 开启物联网之门 教学设计
- 2024220kV 预制舱式模块化海上风电升压站
- 2024秋期国家开放大学《国家开放大学学习指南》一平台在线形考(任务一)试题及答案
- 2024年新人教版道德与法治一年级上册 9 作息有规律 教学课件
- 2024新人教版道法一年级上册第二单元:过好校园生活大单元整体教学设计
- 2024年深圳技能大赛-鸿蒙移动应用开发(计算机程序设计员)职业技能竞赛初赛理论知识
评论
0/150
提交评论