数学史概论近代数学的兴起演示课件_第1页
数学史概论近代数学的兴起演示课件_第2页
数学史概论近代数学的兴起演示课件_第3页
数学史概论近代数学的兴起演示课件_第4页
数学史概论近代数学的兴起演示课件_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,第五讲 近代数学的兴起 -文艺复兴时期的数学(1517世纪初),2,5.2.1代数学 5.2.2三角学 5.2.3从透视学到摄影学 5.2.4计算技术与对数,3,5.1中世纪的欧洲 - 欧洲中世纪的回顾,公元5-11世纪,是欧洲历史上的黑暗时期 直到12世纪,同于受翻译、传播阿拉伯著作和希腊著作的刺激,欧洲数学与开始出现复苏迹象。可以说,12世纪是欧洲数学的翻译时代 欧洲黑暗时期过后,第一位有影响力的数学家是斐波那契,4,斐波那契(L.Fibonacci,1170-1250):(1202 算盘书),5,算盘书主要内容:,整数和分数算法; 开方法; 二次和三次方程以及不定方程; 系统介绍印度

2、-阿拉伯数码; 算盘书可以看作是欧洲数学在经历了漫长的黑夜之后走向复苏的号角。,6,一、文艺复兴(14-16世纪),文艺复兴运动:13世纪末,在意大利各城市兴起,以后扩展到西欧各国,于16世纪在欧州盛行的思想文化运动。是科学与艺术的革命时期,文艺复兴时期在各领域取得很大成就 ,数学成就只不过是其中之一,7,5.2向近代数学的过度-希望的曙光-欧州文艺复兴时期的数学,代数学 三角学 从透视学到射影几何 计算技术与对数,8,5.2.1代数学,欧洲人在数学上的推进是从代数学开始的,它是文艺复兴时期成果最突出、影响最深远的领域,拉开了近代数学的序幕。主要包括三、四次方程求解与符号代数的引入这两个方面。

3、,9,1. 三、四次方程根式求解的成功 第一个突破: 约1515年费罗发现形如:x3+mx=n (m,n0),代数方程的解法 并将解法秘密传给自己的学生费奥 1535年,意大利另一位数学家塔塔利亚,也宣称自己能解形如:x3+mx2=n (m,n0)的三次方程。费奥向塔塔利亚挑战,要求各自解出对方提出的30个三次方程。,10,结果是,塔塔利亚很快解出形如: x3+mx2=n 和x3+mx=n (m,n0)两类型所有方程,而费奥只能解出后一类方程 后来,塔塔利亚把解法传给了卡尔丹,塔塔利亚(niccolo fontana, 1499?1557,绰号tartaglia意为口吃着),11,卡尔丹(15

4、01-1576)医生、数学家、预言家。大法公布了三次方程的解法。,12,大法(Ars Magna),(p, q 0),实质是考虑恒等式,若选取a,b,使:3ab=p, a3-b3=q,不难解得a,b,p, q 0,13,2.四次方程求解,费拉里(1522-1565),卡尔丹的学生,获得解一般四次方程的解法。,x4+ax3+bx2+cx+d=0 基本思想是通过配方、因式分解后降次,14,关于四次方程的解法,以后韦达和笛卡尔都作过研究,并取得成果,由此引发探求五次方程根式解的尝试,经拉格朗日、阿贝尔、伽罗瓦的努力,阿贝尔首先证明了一般的五次及以上方程无根式解,伽罗瓦在此基础上创造了群论,将代数研究

5、推向纵深。,15,3.代数符号体系与代数运算,韦达(F.Vieta):(1591) 近现代数学一个最为明显、突出的标志,就是普遍地使用了数学符号,它体现了数学学科的高度抽象与简练。文艺复兴时期代数学的另一重大进展,便是系统地引入符号代数。 韦达是第一个有意识地、系统地使用字母。他的符号体系的引入导致代数性质上产生最重大变革,16,韦达(1540-1603),法国数学家,(原是律师与政治家,业余时间研究数学。)创立符号代数;发现根与系数的关系。,16世纪最大的数学家,代数学之父:1591年分析引论,17,5.2.2三角学(从球面三角到平面三角),航海、历法推算以及天文观测的需要,推动了三角学的发

6、展 。早期三角学总是与天文学密不可分,这样在1450年以前,三角学主要是球面三角 。后来由于间接测量、测绘工作的需要而出现了平面三角,18,三角学,起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。 15、16世纪三角学的研究转入平面三角,以达到测量上的应用目的。,19,在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J.Regionomtanus,1436-1476)。 雷格蒙塔努

7、斯的主要著作是年完成的论各种三角形。这是欧洲第一部独立于天文学的三角学著作。全书共卷,前卷论述平面三角学,后卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。,20,三角学的进一步发展,是法国数学家韦达所做的平面三角与球面三角系统化工作。他在标准数学(1579)和斜截面(1615)二书中,把解平面直角三角形和斜三角形的公式汇集在一起,其中包括自己得到的正切公式:,21,三角学在今天 的应用,三角测量:在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。

8、,22,5.2.3从透视学到射影几何,由于绘画、制图的刺激而导致了富有文艺复兴特色的学科透视学的兴起,从而诞生了投影几何学。 意大利艺术家布努雷契(f.brunelleschi, 13771446)由于对数学对兴趣而认真研究透视法,他试图运用几何方法进行绘画。 数学透视法的天才阿尔贝蒂(l.b.alberti ,14041472) 的完全是数学性质的论绘画(1511)一书,是早期数学透视法的代表作,书中除引入投影线、截影等一些概念外,还讨论了截影的数学性质,成为射影几何发展的起点。,23,重要人物,布努雷契 意(F.Brunelleschi,1377-1446) 阿尔贝蒂(L.B. Alber

9、ti ,1404-1472) -早期数学透视法的代表作 富有独创精神的数学天才-德沙格(g.desargues, 15911661) (笛沙格),24,德沙格的工作,德沙格(1591-1661),法国陆军军官,德沙格定理。德沙格发表了本关于圆维曲线的很有独创性的小册子试论锥面截一平面所得结果的初稿 ,从开普勒的连续性原理开始,导出了许多关于对合、调和变程、透射、极轴、极点以及透视的基本原理,1、两投影三角形对应边交点共线,反之,对应边共点的两三角形,对应顶点的连线共点(德沙格定理),25,德沙格定理,德沙格,26,德沙格的另一项重要工作是从对合点问题出发首次讨论了调和点组的理论。在对合概念的基

10、础上他又引入共轭点与调和点组的概念,认为对合、调和点组关系在投影变换下具有不变性。,27,即投影线的每个截线上的交比都相等:如下图,有( A B , C D )=( AB,CD),2、交比在投影下的不变性;,28,3、对合、调合点组关系不变性。,对任一直线上的定点O,称直线上的两对点A,B和A,B是对合的,如果成立:OAOB=OA OB,29,帕斯卡,帕斯卡(1623-1662),著作圆锥曲线论(1640),在射影几何方面他最突出的成就就是帕斯卡定理:圆锥曲线的内接六边形对边交点共线。,30,拉伊尔(1640-1718),著作圆锥线,最突出的地方在于极点理论方面有所创新,获得并且这样的定理:若

11、一点Q在直线p上移动,则该点Q的极带将绕直线p的极点P转动。,31,5.2.4计算技术与对数,十六世纪前半叶,欧洲人象印度、阿拉伯人一样,把实用的算术计算放在数学的首位。 1585年荷兰数学家史蒂文发表的论十进制算术系统探讨十进数及其运算理论,并提倡用十进制小数来书写分数,还建议度量衡及币制中也广泛采用十进制。 这种十进位值制的采用又为计算技术的改进准备了必要条件。,32,这一时期计算技术最大的改进是对数的发明和应用,它主要是由于天文和航海计算的强烈需要,为简化天文、航海方面所遇到繁复的高位数值计算,自然希望将乘除法归结为简单的加减法。,33,苏格兰贵族数学家纳皮尔(j.napier)正是在球

12、面天文学的三角学研究中首先发明对数方法的。1614年他在题为奇妙的对数定理说明书的小书中,阐述了他的对数方法。,34,纳皮尔(1550-1617),利用两种不同的运动之间的关系,建立了“对数”关系。称为纳皮尔对数。,35,对数的实用价值很快为纳皮尔的朋友,伦敦雷沙姆学院几何学教授布里格斯(henrybriggs,15611631)所认识,他与纳皮尔合作,决定采用 ,则 时得到 ,这样就获得了今天所谓的“常用对数”。,36,布里格斯(1561-1631),建立了以10为底的常用对数,制出第一张常用对数表。,37,比尔吉(1552-1632),也独立发明了对数。他对数思想的基础是斯蒂费尔的级数对应

13、思想,属于算术性质而略异于纳皮尔的做法。 对数的发明大大减轻了计算工作量,很快风靡欧洲,所以拉普拉斯(laplace, 17491827)曾赞誉道:“对数的发明以其节省劳力而延长了天文学家的寿命”。,38,5.3解析几何的诞生,诞生的社会背景: 历史地位:解析几何是变量数学的第一个里程碑,39,解析几何基本思想:,1.平面上引进所谓“坐标”的概念; 2.平面上的点和有序数对(x,y)之间建立一一对应关系; 3.以此方式,代数方程f(x,y)=0与平面上一条曲线对应起来; 本质思想:用代数的方法去研究几何;,40,解析几何最重要的前驱是法国数学家奥雷斯姆(N. Oresme, 13231382)

14、; 真正发明者归功于法国另外两位数学家笛卡儿(R.Descartes , 15961650)与费马(P. de Fermat, 16011665)。,41,笛卡儿(R.Descartes, 1596-1650): 几何学(1637),我思故我在,证明帕普斯问题时 建立了历史上第一个倾斜坐标系,42,求:,43,新颖的想法:,1.曲线次数与坐标轴选取无关,但坐标轴选取应使曲线方程尽量简单; 2.利用曲线的方程表示来求两条不同曲线的交点; 3.大胆的想法:任何的问题数学问题代数问题方程求解,44,一切问题化归为代数方程求解问题后如何继续?,1.任意选取单位线段; 2.定义线段的加、减、乘、除、乘方、开方等运算; 3.线段的巧妙表示:(a,b,c,);,45,4.一切几何问题成功转化为关于一个未知线段的单个代数方程:,z = b z2 = -az + b z3 = -az2 + b z + c z4 = -az3 + bz2 + cz + d,46,与笛卡儿怀疑、批评希腊几何学思想相反。 另一位法国巨人:费马工作的出发点是竭力恢复希腊几何 他俩工作的出发点不同,但方式都是采用代数方法来研究几何问题。,47,费马(P.de Fermat, 1601-1665),(1629),法国人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论