一元二次方程的求根公式及根的判别式.docx_第1页
一元二次方程的求根公式及根的判别式.docx_第2页
一元二次方程的求根公式及根的判别式.docx_第3页
一元二次方程的求根公式及根的判别式.docx_第4页
一元二次方程的求根公式及根的判别式.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一元二次方程的求根公式及根的判别式主讲:黄冈中学高级教师余国琴一、一周知识概述1、一元二次方程的求根公式将一元二次方程ax2bxc=0(a0)进行配方,当b24ac0时的根为该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2bxc=0(a0);(2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的;(3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式.2、一元二次方程的根的判别式(1)当b24ac0时,方程有两个不相等的实数根;(2)

2、当b24ac=0时,方程有两个相等的实数根;(3)当b24ac0时,方程没有实数根二、重难点知识1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。(2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。(3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若

3、一次项系数中有偶因数,一般也应考虑运用。(4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入(0)求值,所以对某些特殊方程,解法又显得复杂了。2、在运用b24ac的符号判断方程的根的情况时,应注意以下三点:(1)b24ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b24ac;(2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c;(3)根的判别式是指b24ac,而不是三、典型例题讲解例1、解下列方程:(1);(2);(3).分析:用求根公式法解一元二次方程的关键是找出a、

4、b、c的值,再代入公式计算,解:(1)因为a=1,c=10 所以 所以(2)原方程可化为 因为a=1,c=2 所以 所以.(3)原方程可化为 因为a=1,c=1 所以 所以; 所以总结:(1)用求根公式法解一元二次方程首先将方程化为一般形式;如果二次项系数为负数,通常将其化为正数;如果方程的系数含有分母,通常先将其化为整数,求出的根要化为最简形式;(2)用求根公式法解方程按步骤进行例2、用适当方法解下列方程: 分析:要合理地选用适当的方法解一元二次方程,就必须熟悉各种方法的优缺点,处理好特殊方法和一般方法的关系。就直接开平方法、配方法、公式法、因式分解法这四种方法而言,配方法、公式法是一般方法

5、,而开平方法、因式分解法是特殊方法。 公式法是最一般的方法,只要明确了二次项系数、一次项系数和常数项,若方程有实根,就一定可以用求根公式求出根,但因为要代入一元二次方程的求根公式求值,所以对某些方程,解法又显得复杂了。如,可以直接开平方,就能马上得出解;若此时还用求根公式就显得繁琐了。 配方法是一种非常重要的方法,在解一元二次方程时,一般不使用,但并不是一定不用,若能合理地使用,也能起到简便的作用。若方程中的一次项系数有因数是偶数,则可使用,计算量也不大。如,因为224比较大,分解时较繁,此题中一次项系数是-2。可以利用用配方法来解,经过配方之后得到,显得很简单。 直接开平方法一般解符合型的方

6、程,如第小题。 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。解: 两边开平方,得所以 配方,得所以所以 配方,得所以所以 因为 所以 =420=24所以所以 配方:所以所以 整理,得所以 移项,提公因式,得所以小结:以上各题请同学们用其他方法做一做,再比较各种方法的优缺点,体会如何选用合适的方法,下面给出常规思考方法,仅作参考。例3、已知关于x的方程ax23x1=0有实根,求a的取值范围.解:当a=0时,原方程有实根为若a0时,当原方程有两个实根.故,综上所述a的取值范围是.

7、小结:此题要分方程ax23x1=0为一元一次方程和一元二次方程时讨论,即分当a=0与a0两种情况例4、已知一元二次方程x24xk=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x24xk=0与x2mx1=0有一个相同的根,求此时m的值.解:(1)因为方程x24xk=0有两个不相等的实数根, 所以b24ac=164k0,得k4.(2)满足k4的最大整数,即k=3. 此时方程为x24x3=0,解得x1=1,x2=3. 当相同的根为x=1时,则1m1=0,得m=0; 当相同的根为x=3时,则93m1=0,得 所以m的值为0或例5、设m为自然数,且3m40,方程有两个整数根求m的值及方程的根。解:,方程有整数根,4(2m1)是完全平方数。3m4072m1812m1值可以为9,25,49m的值可以为4,12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论