版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.平面向量的实际背景及基本概念1.向量的概念:我们把既有大小又有方向的量叫向量。2.数量的概念:只有大小没有方向的量叫做数量。数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.3. 有向线段:带有方向的线段叫做有向线段。4. 有向线段的三要素:起点,大小,方向a(起点) b(终点)a 5.有向线段与向量的区别;(1)相同点:都有大小和方向(2)不同点:有向线段有起点,方向和长度,只要起点不同就是不同的有向线段 比如:上面两个有向线段是不同的有向线段。 向量只有大小和方向,并且是可以平移的,比如:在中的两个有向线 段表示相同(等)的
2、向量。 向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成6.向量的表示方法:用有向线段表示;用字母、(黑体,印刷用)等表示;用有向线段的起点与终点字母:;7.向量的模:向量的大小(长度)称为向量的模,记作|.8.零向量、单位向量概念:长度为零的向量称为零向量,记为:0。长度为1的向量称为单位向量。9.平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.即:0 。说明:(1)综合、才是平行向量的完整定义; (2)向量、平行,记作. 精品.10.相等向量长度相等且方向相同的向量叫相等向量.说明:(1)向量与相等,记作;(2)零向量与零向量相等; (3)任意两个
3、相等的非零向量,都可用同一条有向线段来表示,并且与有 向线段的起点无关.11.共线向量与平行向量关系:baocdef平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)说明:(1)平行向量是可以在同一直线上的。 (2)共线向量是可以相互平行的。例1.判断下列说法是否正确,为什么?(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等当且仅当什么?(7)共线向量一定在同一直线上吗?解析:(1)
4、不是,方向可以相反,可有定义得出。 (2)不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。 (3)零向量 (4)零向量 (5)共线向量(平行向量 (6)长度相等且方向相同 (7)不一定,可以平行。例2.下列命题正确的是( )a.与共线,与共线,则与c也共线b.任意两个相等的非零向量的始点与终点是平行四边形的四顶点c.向量与不共线,则与都是非零向量d.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以a不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以b不正确
5、;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以不正确;对于c,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若精品.与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选c.例3.如右图所示,设o是正六边形abcdef的中心,分别写出图中与向量 相等的向量。解:按照向量相等的定义可知: 向量的加法运算及其几何意义向量的加法:求两个向量和的运算,叫做向量的加法.三角形法则(记忆口诀:“首尾相接,从头指尾”)3.三角形法则的来由如图,已知向量a、.在平面内任取一点,作a,则向量叫做a与的和,记作a,即
6、a,规定:a + 0-= 0 + aabca+ba+baabbaba+ba4.向量加法的字母公式:5.平行四边形法则精品.图1 如图1,以同一点o为起点的两个已知向量a、b为邻边作平行四边形,则以o为起点的对角线就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.6.平行四边形法则与三角形法则的区别:(1) 平行四边形法则是将两个向量的起点放在一起做出平行四边形,最终和向量的结果的起点和两个分向量的起点是同一起点。(2) 三角形法则要求第一个向量终点和第二个向量的起点连接在一起,然后连接第一个向量的起点和第二个向量的终点组成三角形,最终和向量的结果是:由第一个向量的起点指
7、向第二个向量的终点。7. 一般结论当a,b不共线时,|a+b|b|且a与b同向,则ab d.对于任意向量a、b,必有|a+b|a|+|b| 平面向量的加法运算1、 用三角形法则和平行四边形法则分别画出2、下列命题中正确的是( ) a.单位向量都相等 b.长度相等且方向相反的两个向量不一定是共线向量 c.若a,b满足|a|b|且a与b同向,则ab d.对于任意向量a、b,必有|a+b|a|+|b| 3、已知正方形的边长为1, =a,=b,=c,则|a+b+c|等于( ) a.0 b.3 c. d.24、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为和,那么下列命题中错误的一个是精品.a、与为平行向量 b、与为模相等的向量 c、与为共线向量 d、与为相等的向量5、在四边形中,若,则四边形的形状一定是 ( )(a) 平行四边形 (b) 菱形 (c) 矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 事业单位年度考核总结范文7篇
- 减数分裂和受精作用复习教案
- 玉溪师范学院《民事诉讼法学》2021-2022学年期末试卷
- 国际结算实务电子教案各章作业
- 幼儿园财务管理制度
- 2023年智能计量终端项目成效分析报告
- ECharts数据可视化 教案 第1-3章 初识ECharts 教学设计-柱状图和散点图 教学设计
- 《黑神话:悟空》2025高中数学练习题含答案
- 2024届广西南宁市金伦中学高考热身训练数学试题试卷
- 餐饮招工合同模板
- 商务礼仪说课
- 混凝土售后服务
- 盾构始发条件验收
- GB/T 6726-2008汽车用冷弯型钢尺寸、外形、重量及允许偏差
- GB/T 4372.1-2014直接法氧化锌化学分析方法第1部分:氧化锌量的测定Na2EDTA滴定法
- GB/T 30680-2014氟橡胶板通用技术条件
- GB/T 16830-2008商品条码储运包装商品编码与条码表示
- GB 5226.1-2008机械电气安全机械电气设备第1部分:通用技术条件
- GA/T 850-2021城市道路路内停车位设置规范
- 2023年全面数字化的电子发票辅导培训课件PPT培训教程
- 双代号网络计划图习题
评论
0/150
提交评论