下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、素材-何时获得最大利润理解过程:从题目来看,“何时获得最大利润”似乎是商家才应该考虑的问题但是你知道吗?这正是我们研究的二次函数的范畴因为二次函数化为顶点式后,很容易求出最大或最小值而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题因此如何把实际问题转化为数学问题,从而把数学知识运用于实践,这才是我们学习数学的目的。 某商店经营T恤衫,已知成批购进时单价是25元根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是135元时,销售量是500件,而单价每降低1元,就可以多售出200件请你帮助分析,销售单价是多少时,可以获利最多?没销售单价为x(x135)元,那么(1)销售量可
2、以表示为 ;(2)销售额可以表示为 ;(3)所获利润可以表示为 ;(4)当销售单价是 元时,可以获得最大利润,最大利润是 师从题目的内容来看好像是商家应考虑的问题:有关利润问题不过,这也为我们以后就业做了准备,今天我们就不妨来做一回商家从问题来看就是求最值问题,而最值问题是二次函数中的问题因此我们应该先分析题意列出函数关系式 获利就是指利润,总利润应为每件T恤衫的利润(售价一进价)乘以T恤衫的数量,设销售单价为x元,则降低了(135-x)元,每降低1元,可多售出200件,降低了(135-x)元,则可多售出200(135-x)件,因此共售出500+200(135-x)件,若所获利润用y(元)表示
3、,则y(x-25)500+200(135-x) (1)销售量可以表示为500+200(135-x)=3200200x (2)销售额可以表示为x(3200-200x)=3200x-200x2 (3)所获利润可以表示为(3200x-200x2)-25(3200-200x)-200x2+3700x-8000 (4)设总利润为y元,则y-200x2+3700x-8000=-200(x-. -2000抛物线有最高点,函数有最大值当x925元时,y最大= =9112.5元. 即当销售单价是925元时,可以获得最大利润,最大利润是91125元理解结论: (1)在如何求最大利润问题时,要先用含有自变量的代数式
4、把利润的函数表达出来,然后将所写出的二次函数表达式变形,用顶点式表示出来。(2)提示注意:A. 解答问题要全面,有进需要讨论,如涨价与降价,投入与产出等;B.分清每件的利润与销售量,理清价格与它们之间的关系;C.自变量的取值范围的确定,保证实际问题有意义;D.一般是用二次函数的顶点来求最大值,也时顶点的坐标不在取值范围内时,注意要画图象来分析.典型例题:例1: 某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在4070元之间市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱 (1)写出平均每天销售
5、(y)箱与每箱售价x(元)之间的函数关系式(注明范围) (2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价) (3)求出(2)中二次函数图象的顶点坐标,并求当x40,70时W的值在坐标系中画出函数图象的草图 (4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少? 解:(1)当40x50时,则降价(50-x)元,则可多售出3(50-x),所以y90+3(50-x)=-3x+240当50x70时,则升高(x-50)元,则可少售3(x-50)元,所以y=90-3(x-50)-3x+240 因此,当40x70
6、时,y=-3x+240 (2)当每箱售价为x元时,每箱利润为(x-40)元,平均每天的利润为W(240-3x)(x-40)-3x2+360x-9600 (3)W-3x2+360x-9600 -3(x2-120x+3600-3600)-9600 =-3(x-60)2+1200 所以此二次函数图象的顶点坐标为(60, 1200) 当x40时,W=-3(40-60)2+12000; 当x70时,W=-3(70-60)2+1200=900 草图略 (4)要求最大利润,也就是求函数的最大值,只要知道顶点坐标即可 由(3)得,当x60时,W最大1200即当牛奶售价为每箱60元时,平均每天的利润最大,最大利
7、润为1200元中考链接【摘自2008年恩施自治州初中毕业生学业考试数学试题】23.(10分)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量(千克)与销售价(元/千克)有如下关系:=280.设这种产品每天的销售利润为(元).(1)求与之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?分析:(1)每天的销售利润为每千克的利润与每天所出售千克数的积,(2)将所列二次函数配方成顶点式,可求出最大值,(3)将本函数式中的y换成150即可得到方程。解: y(x20) w(x20)(2x80)2x2120x1600,y与x的函数关系式为:y2x2120x1600 y2x2120x16002 (x30) 2200,当x30时,y有最大值200 当销
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年某咨询公司与某企业咨询服务合同
- 2024年物业买卖信息保密合同
- 镁铬质耐火产品行业行业发展趋势及投资战略研究分析报告
- 高中语文教案模板
- 辅导员个人年终工作总结5篇范文
- 八年级生物教学工作总结【10篇】
- 教师个人工作辞职报告(合集15篇)
- 员工辞职报告(合集15篇)
- 计算机毕业实习报告合集五篇
- 2021年国庆节主题活动总结五篇
- 江西省景德镇市2023-2024学年高二上学期1月期末质量检测数学试题 附答案
- 2024年办公楼卫生管理制度模版(3篇)
- 保险公司2024年工作总结(34篇)
- 2024年01月22503学前儿童健康教育活动指导期末试题答案
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-上(单选题)
- 期末测评(基础卷二)-2024-2025学年一年级上册数学人教版
- 深圳大学《数值计算方法》2021-2022学年第一学期期末试卷
- 服装厂安全培训
- 民法债权法学习通超星期末考试答案章节答案2024年
- 2024年9月时政题库(附答案)
- 消防工程火灾自动报警及联动控制系统安装施工方案
评论
0/150
提交评论