版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.4 课题学习 最短路径问题 杨柳池民族中学 许昌荣,如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?,两点之间,线段最短, ,()两点在一条直线异侧,已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。,P,连接AB,线段AB与直线L的交点P ,就是所求。,思考? 为什么这样做就能得到最短距离呢?,根据:两点之间线段最短.,引言: 前面我们研究过一些关于“两点的所有连线中,线 段最短”、“连接直线外一点与直线上各点的所有线段 中,垂线段最短”等的问题,我们称它们为最短路径问 题现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数
2、学史中著名的“将军饮马问题”,引入新知,问题1相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地到河边什么地方饮马可使他所走的路线全程 最短?,探索新知,精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题这个问题后来被称为“将军饮马 问题” 你能将这个问题抽象为数学问题吗?,探索新知,追问1这是一个实际问题,你打算首先做什么?,将A,B 两地抽象为两个点,将河l 抽象为一条直 线,探索新知,(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在
3、河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;,探索新知,追问2你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?,探索新知,追问2你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?,(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图),追问1对于问题2,如何 将点B“移”到l 的另一侧B 处,满足直线l 上的任意一点 C,都保持CB 与CB的长度 相等?,探索新知,问
4、题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,追问2你能利用轴对称的 有关知识,找到上问中符合条 件的点B吗?,探索新知,问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,作法: (1)作点B 关于直线l 的对称 点B; (2)连接AB,与直线l 相交 于点C 则点C 即为所求,探索新知,问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,探索新知,问题3你能用所学的知识证明
5、AC +BC最短吗?,证明:如图,在直线l 上任取一点C(与点C 不 重合),连接AC,BC,BC 由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,探索新知,问题3你能用所学的知识证明AC +BC最短吗?,证明:在ABC中, ABAC+BC, AC +BCAC+BC 即AC +BC 最短,若直线l 上任意一点(与点 C 不重合)与A,B 两点的距离 和都大于AC +BC,就说明AC + BC 最小,探索新知,追问1证明AC +BC 最短时,为什么要在直线l 上 任取一
6、点C(与点C 不重合),证明AC +BC AC +BC?这里的“C”的作用是什么?,探索新知,追问2回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?,1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直),A, B,作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸于点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BEMN 且BE=MN, MN=CD, BDCE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+
7、MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在ACE中,AC+CEAE, AC+CE+MNAE+MN, 即AC+CD+DB AM+MN+BN 所以桥的位置建在MN处,AB两地的路程最短。,A,B,M,N,E,C,D,2. 如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。 作法:1.作点C关于直线 OA 的 对称点点F, 2. 作点D关于直线 OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+
8、GH+DH最短,F,A,O,B,D , C,E,G,H,证明:在直线OA 上另外任取一点G,在OB上取一点H,连接FG,EH,HG,CG,DH 点F,点C关于直线OA对称,点G.M在OA上, GF=GC,FM=CM, 同理HD=HE,ND=NE, CM+MN+ND=FM+MN+NE=FE, CG+GH+HD=FG+GH+HE, 在四边形EFGH中, FG+GH+HEFE(两点之间,线段最短), 即CG+GH+HDCM+MN+ND即CM+MN+ND最短,3.一点在两相交直线内部,已知:如图A是锐角MON内部任意一点,在MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.,B,C,D,E,分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风力发电电焊机租用合同
- 展厅装修工程合同示范文本
- 文化娱乐防水防腐施工合同
- 2022年福建省中考物理模拟试题分类:作图题
- 2022年上海市中考物理专题练2-声和光
- 2018-2020年广东中考物理复习各地区模拟试题分类(广州专版)(6)-运动和力(含解析)
- 中南大学《现代通信系统》2022-2023学年第一学期期末试卷
- 中南大学《纳米材料学》2021-2022学年第一学期期末试卷
- 中南大学《数字通信原理》2021-2022学年第一学期期末试卷
- 中建项目安全培训
- 计算机网络技术职业生涯规划
- 2024年幼儿园师德师风培训
- 六类网线检测报告
- 电动汽车交流充电桩质量检验规范
- 《不为人知的间歇泉》课件
- 通过《西游记》中的佛教故事了解佛教思想与佛教文化
- TH2819XB变压器综合测试仪操作规程
- 某购物广场公司风险分级管控体系实施指南
- 非煤矿山建设项目安全设施重大变更范围
- EHS(环境、健康、安全)知识培训
- 《农村卫生监督》课件
评论
0/150
提交评论