版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。例1:已知椭圆的焦点是F1(0,1)、F2(0,1),P是椭圆上一点,并且PF1PF22F1F2,求椭圆的标准方程。解:由PF1PF22F1F2224,得2a4.又c1,所以b23.所以椭圆的标准方程是1. 2已知椭圆的两个焦点为F1(1,0),F2(1,0),且2a10,求椭圆的标准方程解:由椭圆定义知c1,b.椭圆的标准方程为1.二、未知椭圆焦点的位置,求椭圆的标准方程。例:1. 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;三、椭圆的焦
2、点位置由其它方程间接给出,求椭圆的标准方程。例求过点(3,2)且与椭圆1有相同焦点的椭圆的标准方程解:因为c2945,所以设所求椭圆的标准方程为1.由点(3,2)在椭圆上知1,所以a215.所以所求椭圆的标准方程为1.四、与直线相结合的问题,求椭圆的标准方程。例: 已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程解:由题意,设椭圆方程为,由,得,为所求五、求椭圆的离心率问题。例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率解: ,例2 已知椭圆的离心率,求的值 解:当椭圆的焦点在轴上时,得由,得当椭圆的焦点在轴上时,得由,得,
3、即满足条件的或 六、由椭圆内的三角形周长、面积有关的问题 例:1.若ABC的两个顶点坐标A(4,0),B(4,0),ABC的周长为18,求顶点C的轨迹方程。解:顶点C到两个定点A,B的距离之和为定值10,且大于两定点间的距离,因此顶点C的轨迹为椭圆,并且2a10,所以a5,2c8,所以c4,所以b2a2c29,故顶点C的轨迹方程为1.又A、B、C三点构成三角形,所以y0.所以顶点C的轨迹方程为1(y0)答案:1(y0)2已知椭圆的标准方程是1(a5),它的两焦点分别是F1,F2,且F1F28,弦AB过点F1,求ABF2的周长4a4.3设F1、F2是椭圆1的两个焦点,P是椭圆上的点,且PF1PF
4、221,求PF1F2的面积PF1F2的面积为PF1PF2244.七、直线与椭圆的位置问题例 已知椭圆,求过点且被平分的弦所在的直线方程解法一:设所求直线的斜率为,则直线方程为代入椭圆方程,并整理得由韦达定理得是弦中点,故得所以所求直线方程为解法二:设过的直线与椭圆交于、,则由题意得得 将、代入得,即直线的斜率为所求直线方程为八、椭圆中的最值问题例 椭圆的右焦点为,过点,点在椭圆上,当为最小值时,求点的坐标解:由已知:,所以,右准线过作,垂足为,交椭圆于,故显然的最小值为,即为所求点,因此,且在椭圆上故所以双曲线典型例题一、根据方程的特点判断圆锥曲线的类型。例1讨论表示何种圆锥曲线,它们有何共同
5、特征解:(1)当时,所给方程表示椭圆,此时,这些椭圆有共同的焦点(4,0),(4,0)(2)当时,所给方程表示双曲线,此时,这些双曲线也有共同的焦点(4,0),)(4,0)(3),时,所给方程没有轨迹二、根据已知条件,求双曲线的标准方程。例2根据下列条件,求双曲线的标准方程(1)过点,且焦点在坐标轴上(2),经过点(5,2),焦点在轴上(3)与双曲线有相同焦点,且经过点解:(1)设双曲线方程为 、两点在双曲线上,解得所求双曲线方程为说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的(2)焦点在轴上,设所求双曲线方程为:(其中)双曲线经过点(5,2),或(舍去)所求双曲线方程是说明:
6、以上简单易行的方法给我们以明快、简捷的感觉(3)设所求双曲线方程为:双曲线过点,或(舍)所求双曲线方程为三、求与双曲线有关的角度问题。例3 已知双曲线的右焦点分别为、,点在双曲线上的左支上且,求的大小解:点在双曲线的左支上(2)题目的“点在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点在双曲线上”结论如何改变呢?请读者试探索四、求与双曲线有关的三角形的面积问题。例4 已知、是双曲线的两个焦点,点在双曲线上且满足,求的面积分析:利用双曲线的定义及中的勾股定理可求的面积解:为双曲线上的一个点且、为焦点,在中,五、根据双曲线的定义求其标准方程。例5已知两点、,求与它们的距离
7、差的绝对值是6的点的轨迹解:根据双曲线定义,可知所求点的轨迹是双曲线,所求方程为动点的轨迹方程,且轨迹是双曲线例是双曲线上一点,、是双曲线的两个焦点,且,求的值解:在双曲线中,故由是双曲线上一点,得或又,得六、求与圆有关的双曲线方程。例6求下列动圆圆心的轨迹方程:(1)与内切,且过点(2)与和都外切(3)与外切,且与内切解:设动圆的半径为(1)与内切,点在外,点的轨迹是以、为焦点的双曲线的左支,且有:,双曲线方程为(2)与、都外切,点的轨迹是以、为焦点的双曲线的上支,且有:,所求的双曲线的方程为:(3)与外切,且与内切,点的轨迹是以、为焦点的双曲线的右支,且有:,所求双曲线方程为:w.w.w.
8、抛物线典型例题一、求抛物线的标准方程。例1 指出抛物线的焦点坐标、准线方程(1) (2)解:(1),焦点坐标是(0,1),准线方程是:(2)原抛物线方程为:,当时,抛物线开口向右,焦点坐标是,准线方程是:当时,抛物线开口向左,焦点坐标是,准线方程是:综合上述,当时,抛物线的焦点坐标为,准线方程是:二、求直线与抛物线相结合的问题例2 若直线与抛物线交于A、B两点,且AB中点的横坐标为2,求此直线方程解法一:设、,则由:可得:直线与抛物线相交,且,则AB中点横坐标为:,解得:或(舍去)故所求直线方程为:解法二:设、,则有两式作差解:,即,故或(舍去)则所求直线方程为:三、求直线中的参数问题例3(1)设抛物线被直线截得的弦长为,求k值(2)以(1)中的弦为底边,以x轴上的点P为顶点作三角形,当三角形的面积为9时,求P点坐标解:(1)由得:设直线与抛物线交于与两点则有: ,即(2),底边长为,三角形高点P在x轴上,设P点坐标是则点P到直线的距离就等于h,即或,即所求P点坐标是(1,0)或(5,0)四、与抛物线有关的最值问题例4定长为3的线段的端点、在抛物线上移动,求的中点到轴的距离的最小值,并求出此时中点的坐标解:如图,设是的焦点,、两点到准线的垂线分别是、,又到准线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年大学化工与制药专业大学物理二月考试题D卷-含答案
- 石河子大学《运动营养学》2022-2023学年第一学期期末试卷
- 模范党支部申报材料(3篇)
- 石河子大学《土力学》2021-2022学年第一学期期末试卷
- 石河子大学《荷载与结构设计方法》2023-2024学年第一学期期末试卷
- 石河子大学《大数据组织与管理》2023-2024学年期末试卷
- 沈阳理工大学《娱乐空间设计》2021-2022学年第一学期期末试卷
- 沈阳理工大学《无线通信系统》2023-2024学年第一学期期末试卷
- 沈阳理工大学《汽车产品运营与组织管理》2023-2024学年第一学期期末试卷
- 沈阳理工大学《工程爆破》2022-2023学年第一学期期末试卷
- 《建筑施工技术》课后习题答案(大学期末复习资料)
- 公司环境行政处罚事件处置预案
- 广东开放大学风险投资(本2022春)-练习4答案
- DB65∕T 3253-2020 建筑消防设施质量检测评定规程
- 二年级苏教版数学上册《7的乘法口诀》教案(公开课三稿)
- (完整PPT)半导体物理与器件物理课件
- ASTM B366 B366M-20 工厂制造的变形镍和镍合金配件标准规范
- JIS G4304-2021 热轧不锈钢板材、薄板材和带材
- 2022年中级经济师-人力资源管理专业押题模拟试卷3套及答案解析
- 小学综合实践活动《认识校园植物》优秀PPT课件
- XRD在薄膜材料研究中应用
评论
0/150
提交评论