分子遗传学2014_第1页
分子遗传学2014_第2页
分子遗传学2014_第3页
分子遗传学2014_第4页
分子遗传学2014_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、简答题:1. 核小体与核小体定位在基因表达及其调控中有何作用? 核小体是染色质的基本结构单位,体内外试验均证实,核小体是基因转录的通用抑制子。细胞内基因组包裹在核小体内,如果启动子区在核小体内,则转录通常会被抑制。试验也证明由于缺少H4组蛋白,在核小体不能形成的酵母细胞系中,很多基因变成组成型表达,而在正常的细胞中,他们均处于抑制状态。 核小体在DNA中的精确定位对细胞正常功能的发挥起重要作用。由于核小体与DNA的动态相互作用,大多数核小体的位置是不固定的。但是在有些情况下,某些核小体被限定在基因组的固定位置上,或者说DNA序列仅以一种特定的构型装配成核小体,则DNA上的每个位点将一直位于核小

2、体上的特定位置,我们称这种装配类型为核小体定位。 核小体的定位对基因的表达调控有重要的影响。它的定位变化总是伴随着基因从抑制到转录状态的转变。核小体的定位或定位的去稳定或解除可能是影响基因转录调控的重要因素。大量的试验结果表明,核小体的形成和在染色质的精确定位是真核基因表达所必需的。有人提出核小体的形成及其在染色质上的精确定位有以下两方面的作用:(1)提供一个支架结构,使转录因子之间的信息传递更有效;(2)染色质结构的不均一性,即某些区域不形成核小体,保证了转录因子易于接近染色质模板。2. 常见的反式作用因子有哪些?其结构特点是什么?这些调节着基因转录活性的反式作用因子,通称为转录因子,已鉴别

3、的转录因子可分为普遍性和组织特异性两类。转录因子有数千种之多,从其结构特点来看,主要有两大功能区,DNA结合域,活性域。对于DNA结合域,根据其氨基酸结构域的特点,又可分为:螺旋-转角-螺旋(helix-turn-helix,HTH),锌指(zinc finger),螺旋-环-螺旋(helix-loop-helix,HLH),亮氨酸拉链(leucine zipper,ZIP),同源异型域(homeodomain,HD),激素受体类(类固醇等)或核受体类,桶(-barrels)结构等。锌指蛋白(zinc finger protein)是由含有锌指结构域的两类蛋白质组成,即传统的锌指蛋白和类固醇受

4、体结合蛋白质。锌指结构域是由蛋白质上保守的半胱氨酸及/或组氨酸与锌原子结合形成一个手指状的结构。典型的锌指蛋白往往有多个锌指结构域,其保守序列为Cys-X2-Cys-X3-phe-X5-leu-X2-His-X2-His,锌原子与其中两个半胱氨酸和2个组氨酸结合形成四面体结构,长23个氨基酸,两个锌指之间由78个氨基酸相连。从每个锌指的三级结构来看,其N端形成折叠,C端形成螺旋。反向平行的折叠区含有2个半胱氨酸,与其后螺旋中的2个组氨酸一起与锌原子结合,而由锌原子稳定了整个锌指结构。同源异型域蛋白属于HTH蛋白,可形成三个螺旋区,其中螺旋2、螺旋3形成典型的HTH域,螺旋3识别螺旋与DNA大沟

5、结合,其N末端臂参与DNA小沟的结合,同源异型域蛋白形成二聚体后才与DNA结合 -桶(-barrels)结构,每个亚基上的-螺旋则与DNA大沟相结合,两个相邻的大沟被识别螺旋结合后可导致DNA分子发生45的弯曲。HLH长4050个氨基酸,由两个长1516个氨基酸的亲水,亲脂的螺旋及长度不同的环(连接区)将其分开。两蛋白的两个-螺旋疏水面相互作用可形成同二聚体或异二聚体,多数HLH附近有一强碱性的氨基酸区,但也有不含该区的HLH,含有碱性区的HLH称为bHLH或HLP,是DNA的识别和结合所必需的,但与DNA结合能力的差异则是由bHLH基序及二聚体的状况所控制的。亮氨酸拉链(leucine zi

6、pper,ZIP)的双亲螺旋其疏水面亮氨酸突出,并与另一个平行的亮氨酸拉链蛋白的亮氨酸突出交错排列,盘绕成卷,两个右手螺旋互相缠绕,每圈3.5个氨基酸,每7个残基构成一个完整的重复单位,因此亮氨酸在拉链区每隔6个氨基酸残基重复出现一次,两个蛋白形成同源二聚体或异源二聚体。在每个拉链蛋白质中与亮氨酸重复序列邻近的区域是高度碱性的,可作为一个DNA的结合位点。整个二聚体呈Y型结构,拉链构成茎,两个碱性区分叉形成臂,横跨在DNA分子上并与相邻的DNA两个大沟结合,这称为bZIP。3. 原核生物与真核生物基因表达调节机制的主要差别是什么?原核生物和真核生物基因表达调控的不同 1. 在原核生物中,基因表

7、达的调控以转录水平调控为主,在调节基因的作用下,主要以操纵子为单位,转录出一条多顺反子mRNA,并指导蛋白质合成;而且转录和翻译是偶联的,很少发生mRNA的加工、修饰。但也存在转录后水平的调控,例如反义RNA的调控,翻译的调控,RNA开关等。2. 在真核生物中,基因表达的调控十分复杂,可发生在多个层次、多个水平,包括从染色体和染色质的表观遗传学控制,DNA的复制、RNA的转录、加工与拼接、蛋白质翻译及翻译后加工、修饰等等。对于真核生物基因的转录调控,主要是顺式作用元件(cis-acting element)与反式作用因子(trans-acting factor)的相互作用。3. 另外,DNA的

8、重排和RNA的交替剪接也是真核生物基因表达多样性的重要机制;近年发现的小分子RNA通过RNA干扰途径也可调节基因的表达,介导DNA的甲基化、mRNA的降解及翻译起始的抑制等。 4. 转座子的遗传学效应与应用转座子:是一类较大的转座因子,除了含有与它转座作用有关基因外,还带有抗药基因以及其他基因,如乳糖发酵基因。(1)改变染色体结构当转座子插入后而引起受体位点DNA一段短的同向重复序列(DR),即靶位加倍(target-site-duplication)。(2)诱发基因突变当转座子插入到某个基因座位中往往导致该基因失活,在某些情况,插入位点的基因保持正常转录,只是转录子中的插入序列通过转录后的剪

9、接过程而被除掉,因此插入位点的基因仍表现出显性性状,这种现象叫做渗漏突变(leaky mutation)。也就是仍有些残余水平基因表达的突变。该基因称为渗漏基因(leaky gene),又称亚效等位基因(hypomorph),即一种突变种基因与其野生型有相似的效应,但效应较弱。(3)调节基因表达反转录病毒带有增强子(enhancer)序列,很多转座子也带有增强子,它们像RNA病毒一样,能使其插入位点附近的基因活性增强。转座子除了含有增强子外,有的转座子还含有启动子,也能促进基因的转录活性。(4)产生新的变异由于转座插入位点可能出现新的基因,如像Tn带的抗药性基因,它的转座不仅造成某个基因的插入

10、突变,同时在此位点上出现一个新的抗药性基因。由于转座作用,使某些原来在染色体相距甚远的基因组合在一起,构建成一个操纵子或表达单元,也有可能产生一些具有新的生物学功能的基因和编码新的蛋白质分子。(5)转座子标记克隆目的基因基因克隆是研究基因结构和功能及基因转移的必要前提,目前常用的办法是构建基因组文库或cDNA文库,然后从中筛选目的基因。该技术的原理是由于转座子序列可以在基因组中转座,如该序列转座正好插入某一基因的外显子区域时,导致这一基因失活,结果表型改变而成为突变体,如该突变是由于转座子的DNA克隆,其中必定会含有与该突变体有关的基因。也就是说,用转座子给未知的目的基因加以标记,这样便于该基

11、因的识别与分离。用该突变型提取DNA构建基因组DNA文库,用标记的转座子序列作为探针,筛选出的克隆中,再对转座子两端序列进行亚克隆,这是被转座子插入的基因序列。这些亚克隆又反过来作为探针,用于筛选野生型个体的基因文库,获得完整的目的基因。(6)转座因子作为基因工程载体 利用P因子作为载体,将外源基因转移到果蝇胚胎生殖系细胞中,对果蝇进行遗传操作。将携带目的基因的缺陷P因子和完整的P因子同时注入到胚胎的前胚盘,完整的P因子不仅能识别自身的末端序列,也能识别缺陷P因子的末端而进行转座,结果两种P因子都被插入到基因组中。只有P因子两末端之间的DNA序列才能被插入,两端外侧序列不是转座因子的组成部分,

12、不会被插入到基因组。因此该技术的优点是只插入一个外源基因的拷贝。也就是说,所有转基因果蝇只携带一个拷贝的外源基因,因而便于对其结构和功能进行研究。5. 简述染色质重塑的基本过程及其生物学功能。染色质重塑(chromatin remodeling)是表观遗传修饰中一种常见的方式,是指导致整个细胞分裂周期中染色质结构和位置改变的过程。此过程涉及某些依赖能量供给的组蛋白修饰,从而导致许多蛋白-蛋白及蛋白-DNA的互作受到破坏。在染色质发生重塑的过程中,密集的染色质丝在核小体连接处发生松懈造成染色质疏松,从而使启动子区中的顺式作用元件得以暴露,为反式作用因子(转录因子)与之结合提供了空间接触的可能。细

13、胞基因组中的DNA通常并非处于裸露状态,而是与组蛋白一起构成结构致密的染色质,故染色质结构状态的改变会影响基因的表达。染色体重塑过程由两种蛋白复合体所介导,即ATP依赖型核小体重构复合体和组蛋白修饰复合体。前者通过水解作用改变核小体构型,后者对核心组蛋白N端尾部的共价修饰进行催化。(1)染色质重塑与发育SWI/SNF在果蝇的个体发育中具有重要作用。另外,ISWI在体细胞核移植过程中还起到染色质重塑因子的作用,它以依赖ATP的方式使通用转录因子TATA框结合蛋白(TATA box binding protein,TBP)从体细胞核基质上解离并从细胞核中释放出来,同时,其他一些蛋白质由卵母细胞质进

14、入核内。TATA框结合蛋白的解离可能启动染色质重塑。(2)染色质重塑与人类疾病染色质重塑复合物和组蛋白修饰酶的突变均可引起人体生长发育畸形,导致智力发育迟缓,甚至癌症的发生。(3)染色质重塑与基因剂量补偿剂量补偿效应通常发生在性染色体中,但是在常染色体异常的非整倍体或具有某些常染色体片段的个体中,同样存在剂量补偿效应。论述题1. 目前最常用的突变体创制方法有哪些?如何利用突变体进行功能基因组学研究?突变体是遗传学研究的重要材料,其表型与基因型是基因功能研究的直接证据,因此突变体的创制和特异突变体的筛选非常重要。已知突变体可分为自发突变和人工诱变。自发突变不足以满足现代遗传学研究的需要。诱发突变

15、则可以利用人工的方法提高基因突变频率,在短时间内创制大量突变体,还可以获得许多在自发突变下很难产生的新类型突变体。基因诱变常用的化学诱变因素多为烷化剂,如EMS和N-甲基-N-亚硝基脲(methylnitrosourea,MNU)等,物理诱变因素为电离辐射和快种子等,生物诱变因素为转座子、逆转座子等。(1)EMS突变体EMS处理生物材料可使DNA的鸟嘌呤第六位酮基烷化而形成O6-乙基鸟嘌呤,而O6-乙基鸟嘌呤可以与腺嘌呤配对而不能与胞嘧啶配对。因此,原来DNA中的G-C对通过随后的修复变为A-T。通常EMS诱发突变99%为C/T突变,导致C/G变为T/A碱基替换。(2)快中子突变体电离辐射是原

16、子核发生衰变时所放出的射线,种类很多,主要有:射线,其本质是氦的原子核,穿透能力弱,在生物组织中穿透只有几十微米;射线,一种电子流,其穿透能力较粒子强,在生物组织中达数个毫米;射线,有时也称为光子,是不带电的粒子,比、粒子小,有很强的穿透能力;n射线,也就是中子流,不带电,几乎不能与原子的电子相互作用,只能和原子核相互作用,一般中子源发出的中子为快中子,能量比较高,质量小,速度快,穿透能力极强。(3)T-DNA标签突变体T-DNA标签技术是以农杆菌介导的遗传转化为基础的一种插入突变研究方法。由于农杆菌的寄主范围较广,转化技术成熟,故是创造插入突变体的有效途径。(4)转座子标签突变体由于转座子活

17、跃的转座活性能导致高频率的基因突变而被广泛应用与病毒、细菌、酵母、果蝇、拟南芥菜、水稻等物种的突变体创制与基因功能研究。(5)突变体库的饱和度分析所谓饱和突变体库(saturated mutant population)是指在一个突变体库中基因组的每个基因至少有一次突变的机会。突变体的饱和度是由突变体容量、每个突变体上的突变位点、有效突变的频率决定的。在固定诱变剂量的前提下基因组本身越大,暴露于诱变剂中的机会也就越多、获得有效突变的频率也就越高,反之基因组越小暴露于诱变剂中的机会也就越小,但单位长度的DNA上的突变位点基本是相同的。2. RNAi通过哪些机制控制基因的表达?实践中有何应用?通过

18、各种途径产生的dsRNA进入宿主细胞,由其细胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA,即siRNA。该siRNA在细胞内RNA解旋酶的作用下可解链成正义链和反义链,继之由反义siRNA再与体内一些酶和蛋白质(包括内切酶、外切酶和解旋酶等)结合形成RNA诱导的沉默复合体(RISC)。研究表明RNA诱导的沉默复合体有多种成员,并使其激活。RISC具有RNA切割的特点。与RISC结合的双链siRNA通过变构释放出和mRNA序列相同的片段,活化的RISC在保留的反义单链RNA引导下与mRNA的靶位点结合,在与siRNA反义链互补结合的mRNA中间切断mRNA,

19、被切段的mRNA随即降解失去翻译活性。由dsRNA加工产生的siRNA可能数量很多,有些还可能不完全配对,它与RISC结合后可与mRNA 3非翻译区结合,通过结合poly(A)的PABP与eIF-4F作用,抑制翻译的起始;RISC同样可再进入细胞核,在该dsRNA的引导下诱导靶基因的启动子DNA发生甲基化,即RNA指导下的DNA甲基化使其不能转录而沉默;或者RISC在siRNA引导下通过RDRP募集组蛋白修饰因子,使H3K9甲基化,从而导致基因附近形成异染色质而是基因沉默。siRNA还有一个扩增过程,即由siRNA导致mRNA切断后,含polyA的mRAN后半段会在核酸酶的作用下从5到3外切而

20、降解,而含帽子的mRNA前半段在依赖于RNA的RNA聚合酶的作用下合成双链。该双链RNA又可作为Dicer的底物,产生更多的siRNA,从而使siRNA序列扩散到mRNA的多处,产生广泛的有效的基因沉默现象。RANi干涉将成为基因功能研究的一把利器,也是基因表达调控、基因治疗的一种重要手段。3. DNA甲基化是如何在转录水平上抑制基因表达的?直接干扰特异转录因子与各自启动子结合的识别位置 DNA的大沟是许多蛋白因子与DNA结合的部位,胞嘧啶的甲基化干扰转录因子与DNA的结合。许多转录因子,如AP-2和E2F等能识别含CpG的序列,且对其甲基化程度非常敏感,当CpG上的C被甲基化后,转录即被抑制

21、转录抑制复合物干扰基因转录 甲基化DNA结合蛋白与启动子区内的甲基化CpG岛结合,再与其它一些蛋白共同形成转录抑制复合物(transcriptional repression complex, TRC),阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。已经鉴定了甲基化胞嘧啶结合蛋白1和2(MeCP1和MeCP2)及甲基化DNA结合蛋白(MBD)等转录抑制复合物。MeCP1的抑制作用比较弱,需要与含12个甲基化CpG的位点结合,缺乏MeCP1的细胞其基因组内甲基化基因的抑制作用减弱。MeCP2在细胞中比MeCPl丰富,转录抑制作用比较强,可与单个甲基化的CpG碱基对结合。通过改变染色质结

22、构而抑制基因表达 DNA甲基化与组蛋白去乙酰化正相关,而乙酰化修饰正是调节基因表达的另一重要方式。染色质构型的变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化和去乙酰化酶本身就分别是转录增强子蛋白和转录阻遏物蛋白。DNA失活的区域处于高度甲基化状态,同时又富含低乙酰化组氨酸。CpG二聚体中胞嘧啶甲基化是高等真核生物基因组的主要特征。一般来说,在基因启动子区的DNA甲基化伴随着基因沉默4. 端粒及其生物学意义端粒是线状染色体末端的DNA重复序列,是真核染色体两臂末端由特定的DNA重复序列构成的结构,使正常染色体端部间不发生融合,保证每条染色体的完整性。端粒是短的多重复的非转录序列(在人和酵母中该序

23、列为:TTAGGG)及一些结合蛋白组成特殊结构。一个基因组内的所有端粒都是由相同的重复序列组成,但不同物种的端粒的重复序列是不同的。除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些,构成端粒的一部分基因约50200个核苷酸会因多次细胞分裂而不能达到完全复制(丢失),以至细胞终止其功能不再分裂。因此,严重缩短的端粒是细胞老化的信号。在某些需要无限复制循环的细胞中,端粒的长度在每次细胞分裂后被能合成端粒的特殊性DNA聚合酶-端粒酶

24、所保留。稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5末端在消除RNA引物后造成的空缺。 组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。染色体由于融合、降解、重排而形成不稳定结构从而威胁到DNA的正确复制和细胞生存,端粒的存在能够保护染色体免于化学修饰、被核酸降解以及因端端作用而产生的威胁。 端粒使染色体末端区域形成异染色质,在细胞进行减数分裂的过程中结合到核膜一特定区域,使得染色体寻找同源染色体启动和配对的过程更加容易,并且保证了染色体分离的正确性。 在细胞有丝分裂的过程中,端粒会随着分裂次数的增加逐渐缩短,当端

25、粒缩短到一定程度时便无法继续维持染色体的稳定,细胞最终死亡,故而能够根据端粒的长度预测细胞的寿命。但是在生殖细胞中,端粒的长度不随细胞分裂而缩短,推测是由于生殖细胞中富含端粒酶的缘故。名词解释:DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。miRNA:即小RNA,长度为22nt左右,5端为磷酸基团、3端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNase酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们

26、主要参与基因转录后水平的调控。RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。(自己找书添加)表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。超基因家族(supergene family):是DNA序列

27、相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA而进行转座的遗传元件。核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RN

28、A), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。核心启动子(core promoter):是指在体外测定到的由RNA pol进行精确转录起始所要求的最低限度的一套DNA序列元件。基因组印迹(genomic imprinting) :也称作基因印迹(gene impringting),是一种新发现的非孟德尔遗传现象,指来自双亲的某些等位基因在子代中呈现差异性表达的现象。程序性细胞死亡/凋亡(programmed cell death/apoptosis):细胞应答一类刺激剂,引起一连串特征性的反应,从而启动导致细胞死亡的途经。焦磷酸化编辑(pyrophosphoroly

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论