众数、中位数、平均数与频率分布直方图的关系_第1页
众数、中位数、平均数与频率分布直方图的关系_第2页
众数、中位数、平均数与频率分布直方图的关系_第3页
众数、中位数、平均数与频率分布直方图的关系_第4页
众数、中位数、平均数与频率分布直方图的关系_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,众数、中位数、平均数与频率分布直方图的关系,用样本数字特征估计总体数字特征,2,一 众数、中位数、平均数的概念,中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,众数:在一组数据中,出现次数最多的数据叫做这组数据的众数,众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.,3,平均数: 一组数据的算术平均数,即 x=,1、 平均数 :由数据及频率计算平均数,即 x = x1f1+x2f2+xkfk (其中fk是xk的频率。) 2、加权平均数 :由数据及其权数和样本容量计算平均数,

2、即 x = (x1n1+x2n2+xknk)/n (其中nk是xk的权数, n为样本容量, 且n1+n2 +nk=n. ) 3、 已知xn的平均数为x, 则kxn+b的平均数为kx+b。,平均数: 一组数据的算术平均数,即,4,二 、 众数、中位数、平均数与频率分布直方图的关系 (在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观便于形象地进行分析。),1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。 当最高矩形的数据组为a, b) 时, 那么(a+b)/2就是众数。,5,0.1,0.2,0.3,0.4,0.5,O 0.5 1 1.5 2 2.5 3 3.5

3、 4 4.5 月平均用水量(t) 例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25,6,2、从频率分布直方图中估计中位数 (中位数是样本数据所占频率的等分线。),当最高矩形的数据组为a, b) 时, 设中位数为(a+X),根据中位数的定义得知, 中位数左边立方图的小矩形面积为0.5, 列方程得: 当最高矩形的数据组之前所有小矩形的面积之和为fm;(频率直方图的面积计算,即组距乘以频率/组距。) x*最高矩形的(频率/组距)+ fm=0.5 求解X, 那么a+X即为中位数。,7,思考题:如何从频率分布直方图中估计中位数?,中位数左边立方图的小矩形面积为0.5,02的

4、小矩形面积之和为:,0.5(0.08+0.16+0.30+0.44)=0.49,0.44,0.50.490.01,0.01/0.5=0.02,如图在直线t2.02之前所有小矩形的面积为0.5,所以该样本的中位数为2.02,8,练习.(广东11变式题1)为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,,,,分布直方图如图3,则这20名工人中一天生产,的中位数 .,该产品数量在,由此得到频率,9,3、平均数是频率分布直方图的“重心”. 是直方图的平衡点. n 个样本数据的平均数由公式:,X=,假设每组数据分别为a1, b1)、 a2, b2)

5、、 ak, bk)时, 且每组数据相应的频率分别为f1、 f2 、 fk;那么样本的平均数(或总体的数学期望)由下列公式计算即可。,10,由频率分布直方图估计样本平均数(或总体数学期望)公式:,X =( a1+b1)/2* f1+ (a2+b2)/2* f2+ (ak+bk)/2* fk (其中每组数据的频率还可以由频率直方图的面积计算而得,即组距乘以频率/组距。),11,练习.(广东11变式题2)为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,,,,分布直方图如图3,则这20名工人中一天生产,的平均数 .,该产品数量在,由此得到频率,1

6、2,总体分布的估计,练习:对某电子元件进行寿命追踪调查,情况如下:,(1)列出频率分布表;,(2)画出频率分布直方图;,(3)估计电子元件寿命在100h400h以内的概率;,(4)估计电子元件寿命在400h以上的概率;,(5)估计总体的数学期望.,13,总体分布的估计,14,总体分布的估计,15,思考:从样本数据可知,所求得该样本的众数、中位数和平均数,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?,频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.,注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总

7、体特征.,16,三、用频率分布直方图估计总体数字的特征 的利弊: 总体的各种数值特征都可以由两种途径来估计, 直接利用样本数据或由频率分布直方图来估计。 两种方法各有利弊;比如:,1、通过频率分布直方图的估计精度低;,2、通过频率分布直方图的估计结果与数据分组有关;,3、在不能得到样本数据,只能得到频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观便于形象地进行分析。,17,四、三种数字特征的优缺点 :,(1)众数体现了样本数据的最大集中点,但它显然对其他数据信息的忽视使得无法客观地反映总体特征。,(2)中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是

8、优点,但它对极端值不敏感有时也会成为缺点.,(3)由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质。但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低。,18,1、在一次歌手大奖赛上,七位评委为歌手打出的分数 如下: 9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分 和一个最低分后,所剩数据的平均值和方差分别为 _;,2、已知数据 的平均数是3,方差为2,求数据 的平均数、方差、标准差?,9.5,0.016,解:平均数是6,方差是8,标准差是 .,去掉最高分和最低分合理吗?,如果求 的平均数、方差、标准差?已知ai的平均数X、方差Y、标准差Z, 则b+kai的平均数是b+kx, 方差是k的平方与Y的乘积,标准差是k与Z的乘积。 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论