版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.直线的倾斜角与斜率(20131125)讲义类型一:倾斜角与斜率的关系1已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;【变式】直线的倾斜角的范围是( )A B C D类型二:斜率定义2已知ABC为正三角形,顶点A在x轴上,A在边BC的右侧,BAC的平分线在x轴上,求边AB与AC所在直线的斜率. 【变式1】如图,直线的斜率分别为,则( )ABCD类型三:斜率公式的应用3求经过点,直线的斜率并判断倾斜角为锐角还是钝角【变式1】过两点,的直线的倾斜角为,求的值【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是124已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上
2、,求实数a的值【变式1】已知,三点,这三点是否在同一条直线上,为什么?【变式2】已知直线的斜率,是这条直线上的三个点,求和的值类型四:两直线平行与垂直5四边形的顶点为,试判断四边形的形状 【变式1】已知四边形的顶点为,求证:四边形为矩形【变式2】已知,三点,求点,使直线,且【变式3】若直线与直线互相垂直,则实数=_直线的倾斜角与斜率(20131125)作业姓名 成绩 题组一直线的倾斜角1.已知直线l过点(m,1),(m1,tan1),则 ()A一定是直线l的倾斜角 B一定不是直线l的倾斜角C不一定是直线l的倾斜角 D180一定是直线l的倾斜角2如图,直线l经过二、三、四象限,l的倾斜角为,斜率
3、为k,则 ()Aksin0Bkcos0 Cksin0Dkcos0题组二直线的斜率及应用3.若一个直角三角形的三条边所在直线的斜率分别为k1,k2,k3,且k1k2k3,则下列说法中一定正确的是()Ak1k21 Bk2k31 Ck10,若平面内三点A(1,a),B(2,a2),C(3,a3)共线,则a_.5已知两点A(1,5),B(3,2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是_题组三两条直线的平行与垂直6已知两条直线l1:axbyc0,直线l2:mxnyp0,则anbm是直线l1l2的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件7已知直线a2xy20
4、与直线bx(a21)y10互相垂直,则|ab|的最小值为 ()A5 B4 C2 D18已知直线axby20与曲线yx3在点P(1,1)处的切线互相垂直,则为()A.B C. D9设直线l1的方程为x2y20,将直线l1绕原点按逆时针方向旋转90得到直线l2,则l2的方程是_题组四直线的倾斜角和斜率的综合问题10.若关于x的方程|x1|kx0有且只有一个正实数根,则实数k的取值范围是_11已知点A(2,3),B(5,2),若直线l过点P(1,6),且与线段AB相交,则该直线倾斜角的取值范围是_12已知点M(2,2),N(5,2),点P在x轴上,分别求满足下列条件的P点坐标(1)MOPOPN(O是
5、坐标原点)(2)MPN是直角直线的倾斜角与斜率(20131125)讲义答案类型一:倾斜角与斜率的关系1已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析:,总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线的倾斜角的范围是A BC D【答案】B解析:由直线,所以直线的斜率为设直线的倾斜角为,则又因
6、为,即,所以类型二:斜率定义2已知ABC为正三角形,顶点A在x轴上,A在边BC的右侧,BAC的平分线在x轴上,求边AB与AC所在直线的斜率. 思路点拨:本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知BAO=OAC=30直线AB的倾斜角为180-30=150,直线AC的倾斜角为30,kAB=tan150= kAC=tan30=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件直线向上方向轴正向小于的角,只有这样才能正确的求出倾斜角.举一反三:【变式1】如图,直线的斜率分别为,则( )ABCD【答案】由题意,则本题选题意图:对倾斜角变化时,如
7、何变化的定性分析理解.选B.类型三:斜率公式的应用3求经过点,直线的斜率并判断倾斜角为锐角还是钝角思路点拨:已知两点坐标求斜率,直接利用斜率公式即可.解析:且,经过两点的直线的斜率,即即当时,为锐角,当时,为钝角总结升华:本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,为锐角;当时,为钝角.举一反三:【变式1】过两点,的直线的倾斜角为,求的值【答案】由题意得:直线的斜率,故由斜率公式,解得或经检验不适合,舍去.故【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12【答案】,即当时,两点的直线的斜率是124已知三点A(a,2)、B(3,7)、C(-2,-9a)在一
8、条直线上,求实数a的值思路点拨:如果过点AB,BC的斜率相等,那么A,B,C三点共线.解析:A、B、C三点在一条直线上,kAB=kAC总结升华:斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.举一反三:【变式1】已知,三点,这三点是否在同一条直线上,为什么?【答案】经过,两点直线的斜率经过,两点的直线的斜率所以,三点在同一条直线上【变式2】已知直线的斜率,是这条直线上的三个点,求和的值【答案】由已知,得;因为,三点都在斜率为2的直线上,所以,解得,类型四:两直线平行与垂直5四边形的顶点为,试判断四边形的形状 思路点拨:证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后
9、再证明平行四边形的一个角为直角.解析:边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,即四边形为平行四边形又,即四边形为矩形总结升华:证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.举一反三:【变式1】已知四边形的顶点为,求证:四边形为矩形【答案】由题意得边所在直线的斜率边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,则;所以四边形为平行四边形,又因为,即平行四边形为矩形【变式2】已知,三点,求点,使直线,且【答案】设点的坐标为,由已知得直线的斜率;直线的斜率;直线的斜率;直线的斜率由,且得解得,所以,点的坐标是【变式3】(2
10、011浙江12)若直线与直线互相垂直,则实数=_【答案】 因为直线与直线互相垂直,所以,所以直线的倾斜角与斜率(20131125)作业答案姓名 成绩 题组一直线的倾斜角1.已知直线l过点(m,1),(m1,tan1),则 ()A一定是直线l的倾斜角B一定不是直线l的倾斜角C不一定是直线l的倾斜角D180一定是直线l的倾斜角解析:设为直线l的倾斜角,则tantan,k,kZ,当k0时,.答案:C2如图,直线l经过二、三、四象限,l的倾斜角为,斜率为k,则 ()Aksin0 Bkcos0Cksin0 Dkcos0解析:显然k0,cos0.答案:B题组二直线的斜率及应用3.若一个直角三角形的三条边所
11、在直线的斜率分别为k1,k2,k3,且k1k2k3,则下列说法中一定正确的是 ()Ak1k21 Bk2k31 Ck10 Dk20解析:结合图形知,k10,若平面内三点A(1,a),B(2,a2),C(3,a3)共线,则a_.解析:A、B、C三点共线,kABkBC,即,又a0,a1.答案:15已知两点A(1,5),B(3,2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是_解析:设直线AB的倾斜角为2,则直线l的倾斜角为,由于02180,0 90,由tan2,得tan,即直线l的斜率为.答案:题组三两条直线的平行与垂直6.(2009陕西八校模拟)已知两条直线l1:axbyc0,直线l2:
12、mxnyp0,则anbm是直线l1l2的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解析:l1l2anbm0,且anbm0/ l1l2,故anbm是直线l1l2的必要不充分条件答案:B7(2009福建质检)已知直线a2xy20与直线bx(a21)y10互相垂直,则|ab|的最小值为 ()A5 B4 C2 D1解析:由题意知,a2b(a21)0且a0,a2ba21,aba,|ab|a|a|2.(当且仅当a1时取“”)答案:C8(2010合肥模拟)已知直线axby20与曲线yx3在点P(1,1)处的切线互相垂直,则为()A.B C. D解析:曲线yx3在点P(1,1)处
13、的切线斜率为3,所以.答案:D9(2009泰兴模拟)设直线l1的方程为x2y20,将直线l1绕原点按逆时针方向旋转90得到直线l2,则l2的方程是_解析:l1l2,k1,k22,又点(0,1)在直线l1上,故点(1,0)在直线l2上,直线l2的方程为y2(x1),即2xy20.答案:2xy20题组四直线的倾斜角和斜率的综合问题10.若关于x的方程|x1|kx0有且只有一个正实数根,则实数k的取值范围是_解析:数形结合在同一坐标系内画出函数ykx,y|x1|的图象如图所示,显然k1或k0时满足题意. 答案:k1或k011(2009青岛模拟)已知点A(2,3),B(5,2),若直线l过点P(1,6
14、),且与线段AB相交,则该直线倾斜角的取值范围是_解析:如图所示,kPA1,直线PA的倾斜角为,kPB1,直线PB的倾斜角为,从而直线l的倾斜角的范围是,答案:,12已知点M(2,2),N(5,2),点P在x轴上,分别求满足下列条件的P点坐标(1)MOPOPN(O是坐标原点)(2)MPN是直角解:设P(x,0),(1)MOPOPN,OMNP.kOMkNP.又kOM1,kNP(x5),1,x7,即P点坐标为(7,0)(2)MPN90,MPNP,kMPkNP1.又kMP(x2),kNP(x5),1,解得x1或x6,即P点坐标为(1,0)或(6,0)欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国手推式移动电站数据监测研究报告
- 2024至2030年中国彩色涂层钢卷行业投资前景及策略咨询研究报告
- 2024至2030年中国庭木户行业投资前景及策略咨询研究报告
- 盆景学知识如何做好一盆盆景
- 2024至2030年中国卸瓶台数据监测研究报告
- 2024至2030年中国冶金控制系统行业投资前景及策略咨询研究报告
- 2024至2030年中国交流耐电压测试仪数据监测研究报告
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024年中国颗粒白土市场调查研究报告
- 2024年中国胶印水性光油市场调查研究报告
- 《超市水果陈列标准》
- 2023年02月江西省九江市八里湖新区公开招考50名城市社区工作者(专职网格员)参考题库+答案详解
- 施美美的《绘画之道》与摩尔诗歌新突破
- 七度空间消费者研究总报告(Y-1012)
- 医学英语翻译题汇总
- 外研上册(一起)六年级知识汇总
- 解析人体的奥秘智慧树知到答案章节测试2023年浙江中医药大学
- 湘西名人-贺龙综述
- 剑桥国际少儿英语Level 3 1 Family matters 课件(共16张PPT)
- S7200西门子手册资料
- 《2019版预防和治疗压力性损伤快速参考指南》简要分享
评论
0/150
提交评论