




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平方根 算术平方根 立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质如果一个数x的平方等于a(即),那么这个数x就叫做a的平方根(或二次方根),记作:,这里a是x的平方数,故a必是一个非负数即;例如16的平方根是4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。正数a的正的平方根叫做a的算术平方根,表示为,例如16的算术平方根是,从定义中容易发现:算术平方根具有双重非负性:;。2. 平方根、算术平方根的区别与联系区别:定义不同;个数不同;表示方法不同;取值范围不同:平方根可以是正数、负数、零,而算术
2、平方根只能取零及正数,即非负数。联系:它们之间具有包含关系;它们赖以生存的条件相同,即均为非负数;0的平方根以及算术平方根均为0。3. 立方根的定义与性质如果一个数x的立方等于a(即),那么这个数x就叫做a的立方根(或三次方根),记作:。立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。二、解题中常见的错误剖析例1. 求的平方根。错解:的平方根是剖析:一个正数有两个平方根,它们互为相反数,而是一个正数,故它的平方根应有两个即3。例2. 求的算术平方根。错解:的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题就是表示的9
3、的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。,而3的算术平方根为,故的算术平方根应为。仿此你能给出的平方根的结果吗?三、典型例题的探索与解析例3. 已知:是算数平方根,是立方根,求的平方根。分析:由算术平方根及立方根的意义可知联立解方程组,得:代入已知条件得:所以故MN的平方根是。例4. 已知,求的算术平方根与立方根。分析:由已知得联立解方程组,得:所以因而的算术平方根与立方根分别为。例5. 若一个正数a的两个平方根分别为和,求的值。分析:由平方根的性质:一个正数有两个平方根,它们互为相反数,因而可构造方程,解得从而评注:本题利用平方根的性质,构造一元一次方程,先求出其平方
4、根,再进一步求出a,解法可谓简捷明了,令人耳目一新。事实上方程思想是初中阶段一种重要的数学思想方法,应引起同学们高度重视。例6. 比较的大小。分析:要比较的大小,必须搞清a的取值范围,由知,由知,综合得,此时仍无法比较,为此可将a的取值分别为;三种情况进行讨论,各个击破。当时,取则,显然有当时,当时,仿取特殊值可得评注:本题的解答用到了分类讨论的思想,所谓分类思想就是根据问题的需要将涉及的对象按一定的标准分成若干类,然后再逐类讨论求解的思维方法。分类要遵循三条原则:标准统一;任何两种情况不重复;每一种情况都不能遗漏。例7. 已知有理数a满足,求的值。分析:观察表达式中的隐含条件,被开方数应为非
5、负数即,亦即,故原已知式可化为:例8. 若x、y、m适合关系式,试求m的值。分析:观察等式的右边的两个表达式的被开方数互为相反数,再结合只有非负数才有算术平方根,因而必有所以。原已知式可化为:再变形得:将代入(*)得:由算术平方根的非负性,再根据“若干个非负数的和为零,则其中每一个非负数均为零”,可得解这个方程组得:评注:抓住题目中隐含的算术平方根具有双重非负性:;是解决此类问题的关键。例9. 有理数a、b、c在数轴对应点如下图所示,化简。分析:根据数轴上的点表示的数,右边的总比左边的数大可知:再结合算术平方根应为非负数,因而原式评注:本例借助以形(数轴)辅数(确定的符号)的方法解题的,是数形结合思想的具体体现。所谓数形结合思想就是在已知条件下建立数和形之间的关系,以形辅数,以数定形,利用数、形的相互关系来解题的思维方法。例10. 借助计算器计算下列各题:(1)(2)(3)(4)仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年二级C语言试题及答案
- 家政服务培训内容
- 注会学习中的问题与解决试题及答案
- 不断更新职业技能的必要性计划
- 促进创新思维的年度活动计划
- 注册会计师考前冲刺的有效方法试题及答案
- 传统制造与现代生产计划的对比
- 如何提高秘书的决策能力计划
- 注会学习讨论组的作用试题及答案
- 图书馆与社区合作的新模式计划
- 房屋租赁合同 (三)
- 2025年北京电子科技职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2024年安徽宁马投资有限责任公司招聘10人笔试参考题库附带答案详解
- 《变频器原理及应用》课件
- 第16课《有为有不为》公开课一等奖创新教学设计
- 新生儿腭裂喂养护理
- 中医养生保健培训
- 2024年职业素养培训考试题库(附答案)
- 第20课 联合国与世界贸易组织-(说课稿)2023-2024学年九年级下册历史部编版(安徽)
- 《光电对抗原理与应用》课件第1章
- 网络安全题库及答案(1000题)
评论
0/150
提交评论