三星OLED简析_第1页
三星OLED简析_第2页
三星OLED简析_第3页
三星OLED简析_第4页
三星OLED简析_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

构原理图 有机发光二极管 ( 又称为有机电激光显示( 因为具备轻薄、省电等特性,因此从 2003 年开始,这种显示设备在 放器 上得到了广泛应用,而对于同属数码类产品的 手机,此前只是在一些展会上展示过采用 工程样品,还并未走入实际应用的阶段。但 幕却具备了许多 目录 第一节、概述 第 二节、 结构、原理 第三节、有机发光材料的选用 第四节、 键工艺 第五节、 彩色化技术 第六节、 驱动方式 第七节、 优缺点 第八节、 应用 第九节、中国大陆 业化进程 第十节、 场前景 第十一节、 技术分类 第十二节 生产设备 展开 第一节、概述 示技术与传统的 示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且 可以做得更轻更薄,可视角度 更大,并且能够显著节省电能。 目前在 二大技术体系中,低分子 术为 日本 掌握,而高分子的G 手机的所谓 是这个体系,技术及专利则由 英国 的科技公司 握,两者相比 品的彩色化上仍有困难。而低分子 较易彩色化,不久前三星就发布了 65530 色的手机用 不过,虽然将来技术更优秀的 取代 有机发光显示技术还存在使用寿命短、屏幕大型化难等缺陷。目前采用 主要是三星如新上市的 56色的 至于 280 上我们都有见到。 为了形像说明 造,可以将每个 元比做一块汉堡包,发光材料就是夹在中间的蔬 菜。每个 显示单元都能受控制地产生三种不同颜色的光。 样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。 主动方式下, 元后有一个薄膜晶体管( 发光单元在 动下点亮。主动式 该比被动式 电,且显示性能更佳。 第二节、 结构、原理 基本结构是由一薄 而透明具 半导体 特 性之铟锡氧化物 (与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层 (发光层 ( 电子传输层 (当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝 原色,构成基本色 彩。 特性是自己发光,不像 此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为 21 世纪最具前途的产品之一。 有机发光二极体的发光原理和无机发光二极体相似。当元件受到直流电( 衍生的顺向偏压时,外加之电压能量将驱动电子( 空穴( 别由阴极与阳极注入元件,当两者在传导中 相遇、结合,即形成所谓的电子 而当化学分子受到外来能量激发後,若电子自旋( 基态电子成对,则为单重态( 其所释放的光为所谓的荧光( 反之,若激发态电子和基态电子自 旋不 成对且平行,则称为三重态( 其所释放的光为所谓的磷光( 当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子( 热能( 方式放出,其中光子的部分可被利用当作显示功能;然有机荧光材料在室温下并无法观测到三重态的磷光,故 件发光 效率之理论极限值仅 25%。 光原理是利用材料能阶差,将释放出来的能量转换成光子,所以我们可以选择适当的材料当作发 光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。此外,一般电子与电洞的结合反应均在数十纳秒( ,故应答速度非常快。 典型结构。典型的 玻璃基板、 锡氧化物)阳极( 有机发光层( 阴极( 所组成,其中,薄而透明的 极与金属阴极如同三明治般地将有机发光层包夹其中,当电压注入阳极的空穴 ( 阴极来的电子( 有机发光层结合时,激发有机材料而发光。 而目前发光效率较佳、普遍被使用的多层 构,除玻璃基板、阴阳电极 与 有机发光层外,尚需制作空穴注入层( 空穴传输层( 电子传输层( 电子注入层( 结构,且各传输层与电极之间需设置绝缘层,因此热蒸镀( 工难度相对提高 ,制作过程亦变得复杂。 由于有机材料及金属对氧气及水气相当敏感,制作完成後,需经过封装保护处理。 需由数层有机薄膜组成,然有机薄膜层厚度约仅 1,0001,500A ( 整个显示板( 封装加干燥剂( 总厚度不及 2002具轻薄之优势。 第三节、有机发光材料的选用 有机材料的特性深深地影响元件之光电特性表现。在阳极材料的选择上,材料本身必需是具 高功 函 数( 可透光性,高功函数、性质稳定且透光的 明导电膜,便被广泛应用于阳极。在阴极部分,为了增 加元件的发光效率,电子与电洞的注入通常需要低功函数( 金属,或低功函数的复合金属来制作阴极(例如: 银)。 适合传递电子的有机材料不一定适合传递电洞,所以有机发光二极体的电子传输层和电洞传输层必须 选用不同的有机材料。目前最常被用来制作电子传输层的材料必须制膜安定性高、热稳定且电子传输性佳,一般通常采用萤光染料化合物 。如 。而电洞传输层的材料属于一种芳香胺萤光化合物,如 有机材料。 有机发光层的材料须具备固态下有较强萤光、载子传输性能好、热稳定性和化学稳定性佳、量子效率高且能够真空蒸镀的特性,一般有机发光层的材料使用通常与电子传输层或电洞传输层所采用的材料相同,例如 广泛用于绿光, 被广泛应用于蓝光。 一般而言, 按发光材料分为两种:小分子 高分子 可称为 小分子 高分子 差异主要表现在器件的制备工艺不同:小分子器件主要采用真空热蒸发工艺,高分子器件则采用旋转涂覆或喷涂印 刷工艺。小分子材料厂商主要有: 光兴产、东洋 造、三菱化学等;高分子材料厂商主要有: 友化学等。目前国际上与 关的专利已经超过 1400 份,其中最基本的专利有三项。小分子 基本专利由 美国 司拥有,高分子 专利由英国的 美国的 司拥有。 第四节、 键工艺 一、氧化铟锡 (板 前处理 (1) 面平整度: 前已广泛应用在商业化的 显示器 面 板制造,其具有高透射率、低电阻率及高功函数等优点。一般而言,利用射频溅镀法 (RF 制造的 受工艺控制因素不良而导致表面不平整,进而产生表面的尖端物质或突起物。另外高温锻烧及再结晶的过程亦会产生表 面约 10 30突起层。这些不平整层的细粒之间所形成的路径会提供空穴 直接射向阴极的机会,而这些错综复杂的路径会使漏电流增加。一般有三个方法可以解决这表 面层的影响 ?U 一是增加空穴注入层及空穴传输层的厚度以降低漏电流,此方法多用于 空穴层较厚的 200二是将 璃再处 理,使表面光滑。三是使用其它镀膜方法使表面平整度更好。 (2) 函数的增加:当空穴由 入 ,过大的位能差会产生萧基能障,使得 空穴不易注入,因此如何降低 口的位能差则成为处理的重点。一般我们使用 式增加 氧 原子的饱和度,以达到增加功函数之目的。 理后功函数可由原先之 功函数已非常接近。 加入 辅助电极 , 由于 电流驱动组件,当外部线路过长或过细时,于外部电路将会造成严重之电压梯度,使真正落于 件之电压下降,导致面板发光强度减少。由 于 阻过大 (10 易造成不必要之外部功率消耗,增加一辅助电极以降低电压梯度成了增加发光效率、减少驱动电压的快捷方式。铬 ( 属是最常被用作辅 助电极的材料,它具有对环境因子稳定性佳及对蚀刻液有较大的选择性等优点。然而它的电阻值在膜层为100为 2 某些应用时仍属过大,因此在相同厚度时拥有较低电阻值的铝 (属 (0.2 成为辅助电极另一较佳选择。但是,铝金属的高活性也使其有信赖性方面之问题因此,多叠层之辅助金属则被提出,如: 而此类工艺增加复杂度及成本,故辅助电极材料的选择成为 艺中的重点之一。 二、阴 极工艺 在高解析的 板中,将细微的阴极与阴极之间隔离,一般所用的方法为蘑菇构型法 (此工艺类似印刷技术的负光阻显影技术。在负光阻显影过程中,许多工艺上的变异因子会影响阴极的品质及良率。例如,体电阻、介电常数、 高分辨率、高 临界维度 (损失以及与 其它有机层适当的黏着接口等。 三、封装 吸水材料:一般 生命周期易受周围水气与氧气所影响而降低。水气来源主要分为两 种:一是经由外在环境渗透进入组件内 ,另一种是在 了减少水气进入组件或排除由工艺中所吸附的水气,一般最常使 用的物质为吸水材 ( 以利用化学吸附或物理吸附的方式捕捉自由移动的水分子,以达到去除组件内水气的目的。 工艺及设备开发:封装工艺之流程如图四所示,为了将 于盖板及顺利将盖 板与基板黏合,需在真空环境或将腔体充入不活泼气体下进行,例如氮气。值得注意的是,如何让盖板与基板这两部分工艺衔接更有效率、减少封装工艺成本以及减 少封装时间以达最 佳量产速率,已俨然成为封装工艺及设备技术发展的 3 大主要目标。 第五节、 彩色化技术 显示器全彩色是检验显示器是否在市场上具有竞争力的重要标志,因此许多全彩色化技术也应用到了 示器 上,按面板的类型通常有下面三种 :素独立发光,光色转换 (彩色滤光膜 ( 一、 素独立发光 利用发光材料独立发光是目前采用最多的彩色模式。它是利用精密的金属荫罩与 素对位技 术,首先制备红、绿、蓝三基色发光中心,然后调节三种颜色组合的混色比,产生真彩色,使三色 件独立发光构成一个像素。该项技术的关键在于提高发 光材料的色纯度和发光效率,同时金属荫罩刻蚀技术也至关重要。 目前,有机小分子发光材料 很好的绿光发光小分子材料,它的绿光色纯度,发光效率和稳 定性都很好。但 好的红光发光小分子材料的发光效率只有 31命 1 万小时,蓝色发光小分子材料的发展也是很慢和很困难的。有机小分子发光材 料面临的最大瓶颈在于红色和蓝色材料的纯度、效率与寿命。但人们通过给主体发光材料掺杂,已得到了色纯度、发光效率和稳定 性都比较好的蓝光和红光。 高分子发光材料的优点是可以通过 化学修饰调节 其发光波长,现已得到了从蓝到绿到红的覆盖整个可见光范围的各种颜色,但其寿命只有小分子发光材料的十分之一,所以对 高分子聚合物 ,发光材料的发光效率和寿命都有待提高。不断地开发出性能优良的发光材料应该是材料开发工作者的一项艰巨而长期的课题。 随着 示器的彩色化、高分辨率和大面积化,金属荫罩刻蚀技术直接影响着显示板画面的质量,所以对金属荫罩图形尺寸精度及 定位精度 提出了更加苛刻的要求。 二、光色转换 光色转换是以蓝光 合光色转换 膜阵列,首先制备发蓝光 器件,然后利用其蓝光激发光色转换材料得到红光和绿光,从而 获得全彩色。该项技术的关键在于提高光色转换材料的色纯度及效率。这种技术不需要金属荫罩对位技术,只需蒸镀蓝光 件,是未来大尺寸全彩色 示器极具潜力的全彩色化技术之一。但它的缺点是光色转换材料容易吸收环境中的蓝光,造成图像对比度下降,同时光导也会造成画面质量降低的问题。 目前掌握此技术的日本出光兴产公司已生产出 10 英寸的示器。 三、彩色滤光膜 此种技术是利用白光 合彩色滤光膜,首先制备发白光 器件,然后通过彩色滤光膜得到三基色,再组合三基色实现彩色显示。该项技术的关键在于获得高效率和高纯度的白光。它的制作过程不需要金属荫罩对位技术,可采用成熟的 液晶显示器 以是未来大尺寸全彩色 采用此技术使透过彩色滤光膜所造成光损失高达三分之二。目前日本 素独立发光,光色转换和彩色滤光膜三种制造 示器全彩色化技术,各 有优缺点。可根据工艺结构及有机材料决定。 第六节、 驱动方式 驱动方式 分为主动式驱动 (有源驱动 )和被动式驱动 (无源驱动 )。 一、无源驱动( 其分为静态 驱动电路 和动态驱动电路。 静态驱动方式:在静态驱动的有机发光显示器件上,一般各有机电致发光像素的阴极是连在一起引出的,各像素的阳极是分立引出的,这就是 共阴的连接方式 。若要一个像素发光只要让恒流源的电压与阴极的电压之差大于像素发光值的前提下,像素将在恒流源的驱动下发光,若要一个像素不发光就将它的阳极接在 一个负电压上,就可将它反向截止。但是在图像变化比较多时可能出现 交叉效应 ,为了避免我们必须采用交流的形式。 静态驱动电路一般用于段式显示屏的驱动上。 动态驱动方式:在动态驱动的有机发光显示器件上人们把像素的两个电极做成了 矩阵型结构 ,即水平一组显示像素的同一性质的电极是共用的,纵向一组显示像素的相同性质的另一电极是共用的。如果像素可分为 N 行和 M 列,就可有 N 个行电极和 M 个列电极。行和列分别对应发光像素的两个电极。即阴极和阳极。在实际电路驱动的过程中, 要逐行点亮或者要逐列点亮像素,通常采用逐行扫描的方式 , 行扫描,列电极为数据电极。实现方式是:循环地给每行电极施加脉冲,同时所有列电极给出该行像素的驱动电流脉冲,从而实现一行所有像素的显示。该行不再同 一行或同一列的像素就加上反向电压使其不显示,以避免“ 交叉效应 ” ,这种扫描是逐行顺序进行的,扫描所有行所需时间叫做帧周期。 在一帧中每一行的选择时间是均等的。假设一帧的扫描行数为 N,扫描一帧的时间为 1,那么一行所 占有的选择时间为一帧时间的 1/N 该值被称为占空比系数。在同等电流下,扫描行数增多将使占空比下降,从而引起有机电致发光像素上的电流注入在一帧中的有 效 下降,降低了显示质量。因此随着显示像素的增多,为了保证显示质量,就需要适度地提高驱动电流或采用双屏电极机构以提高占空比系数。 除了由于电极的公用形成交叉效应外,有机 电致发光显示屏 中正负电荷载流子复合形成发光的机理使任何两个发光像素,只要组成它们结构的任何一种功能膜是直接连接在一起的,那两个发光像素之间就可能有相互 串扰 的现象,即一个像素发光,另一个像素也可能发出微弱的光。这种现象主要是因为有机功能薄膜厚度均匀性差,薄膜的横向绝缘性差造成的。从驱动的角度,为了减缓这种不利的串扰,采取反向截至法也是一行之有 效的方法。 带灰度控制的显示: 显示器的灰度等级是指黑白图像由黑色到白色之间的亮度层次。灰度等级越多,图像从黑到白的层次就越丰富,细节也就越清晰。灰度对于图像显示和彩色化都是一个非常重要的指标。一般用于有灰度显示的屏多为点阵 显示屏,其驱动也多为动态驱动,实现灰度控制的几种方法有:控制法、空间灰度调制、时间灰度调制。 二、有源驱动( 有源驱动的每个像素配备具有开关功能的 低温多晶硅 薄 膜晶体管( 而且每个像素配备一个电荷存储电容,外围驱动电路和显示阵列整个系统集成在同一玻璃基板上。与 同的 构,无法用于 是 因为 用电压驱动,而 依赖电流驱动 ,其亮度与电流量成正比,因此除了进行 换动作的选址 外,还需要能让足够电流通过的导通阻抗较低的小型驱动 有源驱动属于静态驱动方式,具有存储效应,可进行 100%负载驱动,这种驱动不受扫描电极数的限制,可以对各像素独立进行选择性调节。 有源驱动无占空比问题,驱动不受 扫描电极数的限制, 易于实现高亮度和高分辨率 。 有源驱动由于可以对 亮度的红色和蓝色像素独立进行灰度调节驱动 ,这更有利于 色化实现。 有源 矩阵 的驱动电路藏于显示屏内,更易于实现集成度和小型化。另外由于解决了外围驱动电路与屏的连接问题,这在一定程度上提高了成品率和可靠性。 三、主动式与被动式两者比较 被动式 主动式 瞬间高高密度发光(动态驱动 /有选择性) 连续发光(稳态驱动) 面板外附加 片 动电路设计 /内藏薄膜型驱动 线逐步式扫描 线逐步式抹写数 据 阶调控制容易 在 板上形成有机 像素 低成本 /高电压驱动 低电压驱动 /低耗电能 /高成本 设计变更容易、交货期短(制造简单) 发光组件寿命长(制程复杂) 简单式矩阵驱动 +七节、 优缺点 一、 优点 1、厚度可以小于 1 毫米,仅为 幕的 1/3,并且重量也更轻; 2、固态机构,没有液体物质,因此抗震性能更好,不怕摔; 3、几乎没有可视角度的问题,即使在很大的视角下观看,画面仍然不失真; 4、响应时间是 千分之一,显示运动画面绝对不会有拖影的现象; 5、低温特性好,在零下 40 度时仍能正常显示,而 无法做到; 6、制造工艺简单,成本更低; 7、发光效率更高,能耗比 低; 8、能够在不同材质的基板上制造,可以做成能弯曲的柔软显示器。 二、 缺点 1、寿命通常只有 5000 小时,要低于 少 1 万小时的寿命; 2、不能实现大尺寸屏幕的量产,因此目前只适用于便携类的数码类产品; 3、存在色彩纯度不够的问题,不容易显示出鲜艳、浓郁 的色彩。 对二的修改:现在的 寿命已经远远超过 5000 小时了,而且已经生产出了较大尺寸的 板,色彩十分鲜艳。 截止 07 年 7 月前后,荧光材料方面,性能最高的是日本出光兴产 (材料。红光效率达到了 11,寿命 高达 16 万小时;绿光效率达到 30,寿命为 6 万小时;正在开发中的高效率、长寿命蓝光材料 效率为 ,寿命 小时。 磷光材料方面, 司开发的红光材料色度坐标为 (效率达到 15, 500 cd/m2 下 工作寿命 超过 15 万小时;绿光材料色坐标为 (效率达到 65,初始亮度为 1000 cd/m2 时,寿命超过 4 万小时;最难得到的蓝色 磷光材料效率达到了 30,在 200 cd/m2 的初始亮度下,寿命达到了 10万小时。 总体上讲, 、绿、蓝三色材料的发光效率和发光寿命均基本满足实用化需求。 从以上数据看来,现在的 500cd/m2 下至少有 20000 小时的工作时间。 第八节、 应 用 一、 头戴显示器领域的应用 以 视频眼镜 和随身影院为重要载体的 头戴式显示器 得到了越来越广泛的应用和发展。其在数字士兵、虚拟现实、虚拟现实游戏、 3G 与视频眼镜融合、超便携多媒体设备与视频眼镜融合方面有卓越的优势。 与 比, 头戴显示器的应用有非常大的优势:清晰鲜亮的全彩显示、超低的功耗等,是头戴式显示器发展的一大推动力。 率先把 无论是对于民用消费领域还是工业应用乃至军事用途都提供了一个极佳的近眼应用解决途 径。随之,采用 欧洲 的超微 示屏的视频眼镜被推上市场。在国内, 视代)凭雄厚的研发实力率先推出世界首款高分子超微 示屏的视频眼镜;凭借其全知识产权的背景顺利打入国内军事领域,为 中国 数字士兵的建设出一份力。 二、 域的应用 为一款数字随身听已经在市场上日益成为时尚娱乐的主角,对于它的功能、容量、价格等等都得到了人们广泛的关注,也是各厂家目光的焦点所在,可是对于作为 眼睛的屏幕却很少有人涉及。 除了影音随身看产品之外,不论 还是 的 多采用黑白单色 板,仅仅停留在能够聆听音乐的简单要求上。但现如今的 了这种最基本的功能外,更多的立足于人们对于个性、时尚追求的心理,表达的是一种生活的观 念。所以在面板的设计上,出现了多彩背光设计,就是经常听到的 “7 色背光 ” 的产品。在此基础上进一步发展,已经有用到区域彩色 板(如:黄、蓝双 色等区域各 16 色阶)的产品,有代表性的有 10 等。 即 有机发光显示屏 ,在 幕的应用领域属于新崛起的种类,被誉为 “ 梦幻显示屏 ” 。它无需背光灯,而是“ 主动发光 ” 。以 晶屏 为例,它摒弃了传统 缺点,每个像素都可自行发光,不管在什么角度什么光线下都可以比传统 示更加清晰的画面,而且环境越黑屏幕越亮,犹如夜间的莹彩精灵。 消费者多为年轻族群,对他们而言 了基本功用之外,还带有一点点炫耀的色彩。在夜晚寂静的街边,边走边听着音乐,看着 幕 跳动的蓝光,音符的跳动伴着脚步的跳动和心情的起 伏,定有一种别样的感觉。或是在朋友欢聚的 , 光的闪烁熠熠生辉,定能让你成为聚会的主角。 除了带来全新的视觉感受之外, 有很多 板无法比拟的优点。比如可以使 得更轻更薄,可视角度更大,并且能够显著节省电能。不过应用还要搭配 整体设计,才能展现出它的魅力。目前刚刚上市的以说是液晶屏的应用与整体设计相结合的典范。 约、大方,整款机器呈正方形,看上去像一个精致小巧的 手提袋,精华部分又好似一款 华丽精美的手表。而且,运用表带的流行元素取代传统的佩戴方法,提供一系列不同的面板,可依服饰的不同进行替换,改变以往一成 不变的搭配方案,秀出你的时尚搭配,秀出你的独特心情。 用于 品上不仅增加了产品绚丽的美感,而且也为图文资讯的表达锦上添花,无疑将成为 示面板的主流。 三、潜在的应用 术的主要优点是主动发光。现在,发红、绿、蓝光的 可以得到。在过去的几年中,研究者们一直致力于开发 从 背光源 、低容量显示器到高容量显示器领域的应用。下面,将对 潜在应用进行讨论,并将其与其它显示技术进行对比。 1999 年首度商业化,技术仍然非常新。现在用在一些黑白 /简单色彩的 汽车收音机、移动电话、掌上型电动游乐器等。都属于高阶机种。 目前从事 商业开发全世界约 100 多家厂商, 前的技术发展方向分成两大类,日、韩和 台湾 倾 向 低分子 术,欧洲厂商则以 主。两大集团中除了 盟之外,另一个以高分子聚合物为主的飞利浦公司现在也联合了 芝等公司全力开发自己的产品。 2007年第二季全球 场的产值已达到 1 亿 2340 万美元。 在中国企业方面,早在 2005 年, 清华大学 和维信诺公司决定开始 规模生产线建设,并最终在 昆山 建设了 广东 省也积极上马 至 2009 年 12 月,广东已建、在建和筹建的 产线项目有 5 个,分别是 汕尾 信利小尺寸 产线、 佛山 中显科技的低温多晶硅 膜 场效应晶体管 ) 产线专案、 东莞 宏 威的 示幕示范生产线项目、惠州茂勤光电公司 动式 )电项目、彩虹在佛山建设的 产线项目。根据调研公司 报告,全球 业 2009 年的产值为 2008 年增长 35%。中国成为全球 用最大的市场,中国的手机、移动显示设备及其他 消费电子产品 的产量都超过全球产量的一半。 第九节、中国大陆 业化进程 一、研发单位 清华大学、华南理工、 北京 大学、吉林大学、 上海大学 、香港城市大学、辽宁科技大学、 长春 光机所、北京化学所等高校、研究所、以及北京 京东方 、上海广电电子、中国普天集团、长春竺宝科技、 杭州 东方通信、云南北方奥雷德 光电科技股份有限公司等企业约 40 多家。 二、产业化 北京 维信诺 科技有限公司,清华大学技术入股,建有 中国大陆 第 一条 清华一起申请了 190多项国内外 发了 128*64、 132*64、16*1 等 品。并研制成功了 64(64、 96(64、 160(128彩色 96*64 多色及 240 单色 品,并在 2008 年进入规模化生产。 2005年 11 月开始在昆山筹备建立中国大陆第一条 规模生产线。 上海航天欧德 (上 海大学 ),与杭州士兰微电子合作,最近成功开发出具有 自主知识产权 的国内第一款 包括一颗 80行驱动 (一颗 80 列驱动 (用 装,用于手机屏的 驱动 汕尾信利半导体(技术 :韩国 备 :口本 该公司的 云南北方奥雷德光电科技股份有限公司,是中国第一家可以生产 型显示器的公司,除 现有 辨率 型显示器外,对 逐步形成 、 、 等,分辨率从 800600 到 19201080 的 型显示器。填补了国内 型显示器领域的空白。 三、驱动 深圳 先科显示 (香港 城市大学、晶门科技 )。香港晶门科技发布一款新的带有控制器的 色驱动 是一款集成控制器及内建 C 电压转换器的单芯片 96*64, 65K 色的 动芯片 ,可用于手机及其它移动终端。 第十节、 场前景 一、 2013 年全球 视机市场将达 14 亿美元 据 市场研究公司 新发表的研究报告称, 2013 年全球 有机发光二极管 )电视机出货量将从 2007 年的 3000 台增长到 280 万台, 复合年增长率 为 从全球销售收入看, 2013 年全球 视机的销售收入将从 2007年的 200 万美元增长到 14 亿美元,复合年增长率为 , 示技术要对市场产生真正的影响还需要克服一些挑战。首 先, 示屏制造工艺还不充分。随着显示屏尺寸的加大 ,成品率损失和制造损失也越来越大。此外, 示屏材料的使用寿命仍需要提高。 过, 视机也有许多优点。 视不需要背光,因此比其它技术更省电和更多做的更薄。 视响应时 间非常快,在观看电视的时候没有移动模糊的现象。此外, 视比其它技术的色彩更丰富。 索尼在 2007 年 12 月在日本市场推出了售价 1800 美元的 11 英寸 视机,首先进入了这个市场。包括东芝和松下在内的一些厂商预计将在 2009 年进入这个市场。 二、商品化过程 1997 年 表了配备解析度为 256单色 板的车用音响; 清达光电 载音响显示器 1999 年 功开发出 、解析度为 320256色的全彩( 板; 2000 年 动电话 用 多彩( 板; 2001 年 板之 行动电话 ; 2002 年 动电话 屏幕搭配 全彩 板,自此 行动电话次萤幕的应用随之大量兴起。 三、 显示器即将投入商用 研发暨生产金氏记录最小 幕的 司,将于今年中由日本数位相机厂 出首宗消费电子产品,结合录音拨放高解析度数位相机, 低耗电 1/4 析度( 3 20 x x 240) 显示器( 将用在新产品的电子观景窗和目镜上。据了解,这种全球新产品是由台湾某数位相机厂设计研发出来。 略长安德伍( 示,针对微显示器的技术商业化,投入五年的时间,目前已臻成熟,且做到世界级的独特技术层级。 四、 显示和照明领域的地位 有机发光二极管 (术在提振行业当前的不景气方面迈出了一大步,它正在显示和 照明 领域开拓出许多高利润的应用。有迹象表明,有源矩阵 (最终主宰 这一应用领域。 司预测,到 2015 年, 示屏的营收将从 2008 美元增长到 60 亿美元, 年复合增长率 (将达到 40%。届时, 场容量总计达 26 亿美元。手机显示屏 (目前主要采用各种尺寸的 场将占到 19 亿美元 (图 1A)。 该市场研究公司还表示,虽然 示屏的单位出货量到 2015 年将一直增长,但其收入将保持平稳。与此同时, 单位出货量将增加两 倍,并将在 2011 年超过 出货 量(图 1b)。 司指出,目前 在严重供过于求的情况。此外,许多建 立了大型 产线的公司正发现,由于有限的应用和来自 示屏的竞争,这些生产线现在已处于开工不足状况。与 示屏相 比, 样以很高性价比做出大型显示屏,因此其应用已受到局限。 “ 去年, 求的增长弥补了 下滑, ”示技术总监 , “ 展望未 来,为 到一个 以与 其竞争的缝隙市场是很重要的,如柔性或透明显示或照明。 发商也应该寻找机会把他们的技术与其他热点技术 (如 触摸屏 )结合起来。 ” 另一方面,由于预期对 大量需求,因此 生产能力正在急剧扩张。与 比, 薄的外形、更宽的 视角、更快的响应速度、更低功耗、更好的色域和色彩还原、更高的对比度和更宽的 工作温度范围 。 不过,各公司仍然必须解决如何实现更大尺寸的 板和提供更长的工作寿命等问题。另外,还需要更高效且寿命更长的蓝光 解决这些问题,设 计人员正在转向非晶硅、改进的材料、薄膜晶体管 (金属氧化物驱动器电路、以及可实现 板更高生产良率的更佳工艺方法。 素启动和关闭的速度比传统电影中像素运动的速度快两倍多。比 耗更低的 示应用的理想选择。 适合于大屏幕显示器和电视机、电子标志牌和广告牌。 “能效比 很多, ”技术商业化副总裁 。 第十一节、 技术分类 以 用的有机发光材料来看,一是以染料及颜料为材料的小分子器件系统,另一则以共轭性高分子为材料的高分子器件系统。同时由于有机电致发光器件 具有发光二极管整流与发光的特性,因此小分子有机电致发光器件亦被称为 高分子有机电致发光器件则被称为小分子及高分子 材料特性上可说是各有千秋,但以现有技术发展来看,如作为 监视器 的信赖性上,及电气特性、生产安定性上来看,小分子 在是处于领先地位,当前投入量产的 是使用小分子有机发光材料。 发光特点及原理 自发光材料,不需用到背光板,同时视角广、画质均匀、反应速度快、较易彩色化、用简单驱动电路即可达到发光、制程简单、可制作成挠曲式面板,符合轻薄短小的原则,应用范围属于中小尺寸面板。 显示方面:主动发光、视 角范围大;响应速度快,图像稳定;亮度高、色彩丰富、分辨率高。 工作条件:驱动电压低、能耗低,可与太阳能电池、集成电路等相匹配。 适应性广:采用玻璃衬底可实现大面积平板显示;如用柔性材料做衬底,能制成可折叠的显示器。由于 全固态、非真空器件,具有抗震荡、耐低温( )等特性,在军事方面也有十分重要的应用,如用作坦克、飞机等现代化武器的显示终端。 由于上述优点,在商业领域 示屏可以适用于 和 、复印机、游戏机等;在通讯领域则可适用于手机、移动网络终端等领域;在计 算机领域则可大量应用在 用 家用 笔记本电脑 上;消费类电子产品领域,则可适用于音响设备、 数码相机 、便携式 工业应用领域则适用于仪器仪表等;在交通领域则用在 机仪表上等。 第十二节 生产设备 目前主流的 产设备有美国 本富士,韩国三星等的设备。 扩展阅读: 1 : 显示器 , 液晶 , 显示技术 , 发光二极管 示屏 目录 生产企业 介 分集剧情 发光原理 示屏将是未来车载显示系统的新宠 特点 两种不同的 应用 生产企业 示屏多用在手机等小屏显示上,尤以三星可以量产,但产能仍较低,联想乐 货就因为屏幕产量跟不上。 索尼和三菱电机为龙头,技术最成熟。 介 有机电激 发光二极管 ( 于同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、 可用于挠曲性面板、使用温度范围广、构造及制程较简单等 优异之特性,被认为是下一代的平面显示器新兴应用技术。对于有机电激发光器件,我们可按发光材料将其分为两种 : 小分子 高分子 可称为 它们的差异主要表现在器件的制备工艺不同 :小分子器件主要采用真空热蒸发工艺,高分子器件则采用旋 转涂覆或喷墨工艺。 分集剧情 分集查询 示器技术及功能 有机发光二极管 (显示器越来越普遍,在手机、媒体播放器及小型入门级电视等产品中最为显著。不同于标准的液晶显示器, 素是由电流源所驱动。若要了解 源供应如何及为何会影响显示器画质,必须先了解 示器技术及电源供应需求。本文将说明最新的 示器技术,并探讨主要的电源供应需求及解决方案,另外也介绍专为 源供应需求而提出的创新性电源供应架构。 背板技术造就软性显示器 高分辨率彩色主动式矩阵有机发光二极管 (显示器需要采用主动式矩阵背板,此背板使用主动式开关进行各像素的开关。目前液晶 (显示器非晶硅制程已臻成熟,可供应低成本的主动式矩阵背板 ,并且可用于 多公司目前正针对软性显示器开发有机薄膜晶体管 (背板制程,此一制程也可用于 示器,以实现全彩软性显示器的推出。不论是标准或软性 需要运用相同的电源供应及驱动技术。若要了解 术、功能及其与电源供应之间的互动,必须深入剖析这项技术本身。 示器是一种自体发光显示器技术,完全不需要任何背光。 用的材质属于化学结构适用的有机材质。 术需要电流控制驱动方法 有与标准有机发光二极管 (相 当类似的电气特性,亮度均取决于 流。若要开启和关闭 控制 流,需要使用薄膜晶体管 (控制电路。 进阶节能模式可达到最高效率 和任何电池供电的设备一样,只有在转换器以整体负载电流范围的最高效率进行运作时,才能达到较长的电池待机时间,这对于 示器尤其重要。 示器呈现全白时会耗用最大的电源,对于其它任何显示色彩则电流相对较小,这是因为只有白色需要所有红、绿、蓝子像素都全亮。举例来说, 显示器需要 80流来呈现全白影像,但只需要 5流显示其它图标或图形。因此, 源供应需要针对所有负载电流达到高转换器效率。为了达到如此的效率,需要运用进阶的节能模式技术来减少负载电流,以降低转换器切换频率。由于这是透过电 压控制震荡器 (完成,因此能够将可能的 题降至最低,并且能够将最低切换频率控制在一般 40音讯范围以外,这可避免陶瓷输入或输出电容产生噪音。在手机应用中使用这类装置时,这特别重要,而且可简化设计流程。 发光原理 有机发光显示技术由非常薄的有机材料涂层和玻璃基板构成。当 有电荷通过时这些有机材料就会发光。 光的颜色取决于有机发光层的材料,故厂商可由改变发光层的材料而得到所需之颜色。有源阵列 有机发光显示屏 具有内置的电子电路系统因此每个像素都由一个对应的电路独立驱动。 备有构造简单、自发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论