全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会读书,爱读书!快乐的读书!第八讲 二元一次方程组一、知识梳理(一)二元一次方程组的有关概念1二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。2二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。任何一个二元一次方程都有无数个解。3方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。4二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。(二)二元一次方程组的解法:1代入消元法 2加减消元法 二、典例剖析专题一:代入消元法:51、直接代入 例1 解方程组跟踪训练: 2、变形代入 例2 解方程组跟踪训练: 小结:代入消元法的方法(步骤):(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入原方程,求出另一个未知数的值,写出方程组的解.专题二:加减消元法例3、解方程组(1) (2) (3) 跟踪训练:(1) (2) 注意:当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.变式练习选择适当的方法解下列方程组 (1) (2) 专题三:有关二元一次方程组以及解的问题:例4、(1)已知方程是二元一次方程,求m,n的值。(2) 求方程x+2y=5在自然数范围内的解。变式练习(1)若方程(2m6)x|n|1+(n+2)y=1是二元一次方程,则m =_,n =_(2)二元一次方程3a+b=9在正整数范围内的解的个数是_.(3)已知(3x2y+1)2与|4x3y3|互为相反数,则x=_,y=_专题四:字母系数的二元一次方程组例5:(1)已知关于x,y的方程组的解满足2x-3y=9,求m的值。(2)(3)若方程组的解互为相反数,求m的值。变式练习解关于x,y的方程组,并当解满足方程4x3y21时的k值例6已知关于x,y的方程组,分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解跟踪练习.(1)当为何值时,方程组有唯一的解 ?有无穷多解? 家庭作业一、解方程组 3 4. 二、选择题、填空题:1. 已知且x、y之和为12,则m等于( )A. 10 B. 15 C. 20 D. 252. 方程在自然数范围内的解( ) A. 有无数对 B. 只有1对 C. 只有3对 D. 以上都不对3. 如果且那么的值是( ) A. 5 B. 10 C. 5 D. 104. 当 时,代数式与的和与差都是9。5. 已知,则_。6. 已知二元一次方程组,则_ 。7. 已知是关于x、y的二元一次方程组的解,则a+b= 。8. 求出方程3x+y=9在正整数范围内的解是 。9. 已知并且,则x:z= ,y:z= 。10. 若关于x、y的方程组的解x、y的和等于5,求k。11. 二元一次方程组的解中,x、y的值相等,求k,并写出这个方程的整数解。12. 已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学能力测试试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规每日一练试卷A卷含答案
- 四川省网约配送员职业技能竞赛理论考试题及答案
- 三年级数学计算题专项练习汇编及答案集锦
- 2024建筑施工协议代理业务规范稿
- 2024投标专用协议样本解析
- 基于网络空间安全的个人信息保护研究
- 2024年复婚二次离婚协议规范样本
- 2024专业红娘服务会员协议
- 2024年度高品质防盗门供应协议范例
- 消防安全-情系你我他
- 短视频的拍摄与剪辑
- 产品设计-浅谈智能蓝牙音响的外观创新设计
- 江苏省南京江宁联合体2023-2024学年八年级上学期期中考试英语试卷
- 快速康复外科(ERAS)护理
- 医疗机构安全检查表
- 第六章-巷道支护01
- 应急管理法律法规及国标行标清单
- 监理规划、监理细则审批表
- 香菇种植示范基地项目可行性策划实施方案
- 施工现场材料使用明细表
评论
0/150
提交评论