




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,SpatialProblem,Chapter8,2,第八章空间问题,3,SpaceProblem,Chapter8SpaceProblem,8-4TheSphericalSymmetricProblemofSpace,8-3TheAxiallySymmetricProblemofSpace,8-2TheBasicEquationundeRectangularCoordinate,8-1Introduction,4,空间问题,第八章空间问题,8-4空间球对称问题,8-3空间轴对称问题,8-2直角坐标下的基本方程,8-1概述,5,Inthischapterwefirstgiveouttheequationsofequilibrium,thegeometricequationsandthephysicalequationsunderrectangularcoordinateforspatialproblems.Fortheanalyticsolutionsofspatialproblemscanonlybeobtainedunderpeculiarboundaryconditions,wediscusstheaxialsymmetricproblemsandtheballsymmetricproblemsofspaceemphatically.,8-1Introduction,SpaceProblem,6,本章首先给出空间问题直角坐标下的平衡方程、几何方程和物理方程。针对空间问题的解析解一般只能在特殊边界条件下才可以得到,我们着重讨论空间轴对称问题和空间球对称问题。,8-1概述,空间问题,7,8-2BasicEquationsunderRectangularCoordinate,One.DifferentialEquationsofEquilibrium,Consideranarbitrarypointinsidethebodyandfetchasmallparallelhexahedron,whichstresscomponentsoneachsideareshownasfigure.,Ifabdenotesthelinewhichjoinsthecentersoftwofacesofthehexahedron,thenfromweget,Cancelingtermsandneglectinghigherordersmallvariables,weget,SpaceProblem,8,8-2直角坐标下的基本方程,空间问题,一平衡微分方程,在物体内任意一点P,取图示微小平行六面体。微小平行六面体各面上的应力分量如图所示。,若以连接六面体前后两面中心的直线为ab,则由得,化简并略去高阶微量,得,9,Similarly,weget,Hereweprovetherelationoftheequalityofcrossshearsagain,from,Listtheequations,cancelterms,weget,Thesearedifferentialequationsofequilibriumunderrectangularcoordinateofspace,Two.GeometricEquations,Forspatialproblems,deformationcomponentsanddisplacementcomponentsshouldsatisfyfollowinggeometricequations,Ofwhichthefirsttwoandthelasthavebeenobtainedamongplaneproblems,theotherthreecanbeledoutwiththesamemethod.,SpaceProblem,10,空间问题,同理可得,这只是又一次证明了剪应力的互等关系。,由,立出方程,经约简后得,这就是空间直角坐标下的平衡微分方程。,二几何方程,在空间问题中,形变分量与位移分量应当满足下列6个几何方程,其中的第一式、第二式和第六式已在平面问题中导出,其余三式可用相同的方法导出。,11,Three.PhysicalEquations,Foranisotropicbody,therelationsbetweendeformationcomponentsandstresscomponentsareasfollows:,Thesearephysicalequationsforspatialproblems.,Ifstresscomponentsaredenotedbystraincomponents,physicalequationscanbewrittenas:,where:,SpaceProblem,12,空间问题,三物理方程,对于各向同性体,形变分量与应力分量之间的关系如下:,这就是空间问题的物理方程。,将应力分量用应变分量表示,物理方程又可表示为:,其中:,13,FourEquationsofCompatibility,Differentiatethesecondandthethirdformulaofgeometricequationsattheleft.Addingthesetwo,weget,Substitutethefourthformulaofgeometricequationsintotheaboveequation,weget,(a),SpaceProblem,14,空间问题,四相容方程,将几何方程第二式左边对z的二阶导数与第三式左边对y的二阶导数相加,得,将几何方程第四式代入,得,(a),15,DifferentiatethelatethreeformulasofgeometricequationsseparatelyforX,Y,Z,weget,Fromtheaboveequations,weget,SpaceProblem,16,空间问题,将几何方程中的后三式分别对x、y、z求导,得,并由此而得,17,Theequationsof(a),(b),(c),(d)arecalledcompatibilityconditionsofdeformation,alsoknownasequationsofcompatibility.,Substitutingphysicalequationsintotheaboveequations,andcancelingtermsaccordingtodifferentiateequationsofequilibrium,wegetthecompatibilityequationswhichareexpressedwithstresscomponents:,SpaceProblem,18,空间问题,方程(a)、(b)、(c)、(d)称为变形协调条件,也称相容方程。,将物理方程代入上述相容方程,并利用平衡微分方程简化后,得用应力分量表示的相容方程:,19,WecallthemMichelcompatibilityequations.,SpaceProblem,20,空间问题,称其为密切尔相容方程。,21,Amongspatialproblems,iftheelasticitybodysgeometricshape,restraintconditionandanyexternalfactorsaresymmetricalinacertainaxis(anyplanewhichpassesthisaxisisallsymmetricalone),thenallstresses,deformationsanddisplacementsaresymmetricalinthisaxis.Thiskindofproblemiscalledaxialsymmetryproblemofspace.,Theformsofelastomersofaxialsymmetryproblemaregenerallydividedintotwokinds:cylinderorhalfspacebody.,Accordingtothecharacteristicofaxialsymmetry,weshouldadoptthecylindricalcoordinates.ifwetakezaxisastheaxisofsymmetry,thenallthestresscomponents,straincomponentsanddisplacementcomponentswillbeonlythefunctionofrandz,withthecoordinatehavenothingtodowith.,8-3AxiallySymmetricProblemsforSpace,SpaceProblem,22,空间问题,8-3空间轴对称问题,23,One.DifferentialEquationsofEquilibrium,Considerasmallelementasshowninfigure.Foraxialsymmetry,theelementstwocylindricalplanesexistonlynormalstressesandaxialshearstresses;itstwohorizontalplanesexistonlynormalstressesandradialshearstresses;itstwoperpendicularplanesexistonlyroundnormalstresses,whichareshowninfigure.,Accordingtotheassumptionofcontinuity,stresscomponentsofthesmallelementspositiveplaneshaveasmallincreasecomparedwiththenegativeones.Attention:theincreaseofroundnormalstressesarezeroatthismoment.,Forequilibriumatradialdirectionandaxialdirectionandfrom,cancelingtermsandignoringthehighordersmallvalues,weget,SpaceProblem,24,空间问题,25,Thesearethedifferentialequationsofequilibriumforaxialsymmetryproblemsintermsofcylindricalcoordinates.,Two.GeometricEquations,Similartotheanalysisofplaneproblemintermofpolarcoordinates,weget,thestraincomponentscausedbyradialdisplacementare:,Thestraincomponentscausedbyaxialdisplacementare:,Fromtheprincipleofsuperposing,namelywegetthegeometricequationsforspatialaxialsymmetryproblems:,SpaceProblem,26,空间问题,这就是轴对称问题的柱坐标平衡微分方程。,二几何方程,通过与平面问题及极坐标中同样的分析,可见,由径向位移引起的形变分量为:,由轴向位移引起的形变分量为:,由叠加原理,即得空间轴对称问题的几何方程:,27,Three.PhysicalEquations,Becausethecylindricalcoordinatesareorthogonalcoordinatesastherectangularones,wecangetthephysicalequationsdirectlyfromHookeslaw:,Ifstresscomponentsareexpressedwithstraincomponents,theaboveequationscanbewrittenas:,Where:,SpaceProblem,28,空间问题,三物理方程,由于圆柱坐标,是和直角坐标一样的正交坐标,所以可直接根据虎克定律得物理方程:,应力分量用形变分量表示的物理方程:,其中:,29,Four.SolutionofAxialSymmetryProblems,Substitutethegeometricequationsintothephysicalequationswhichstresscomponentsareexpressedwithstraincomponents,wegettheelasticequations:,Where:,Substitutetheaboveequationsintothedifferentialequationsofequilibrium,andusethenotation:,Weget,Theseareknownasbasicdifferentialequationsforsolvingthespatialaxialsymmetryproblemsintermsofdisplacementcomponents.,Obviously,thedisplacementcomponentsinaboveequationsarefunctionscoordinatesrandz,theycantbesolveddirectly.Soweintroducethefollowingmethod:,SpaceProblem,30,空间问题,四轴对称问题的求解,将几何方程代入应力分量用应变分量表示的物理方程,得弹性方程:,其中:,再将弹性方程代入平衡微分方程,并记:,得到,这就是按位移求解空间轴对称问题所需要的基本微分方程。,显然,上述基本微分方程中的位移分量是坐标r、z的函数,不可能直接求解,为此介绍下列方法:,31,Five.DisplacementTendencyFunction,Forsimplicity,ignoringthebodyforce,thebasicdifferentialequationsintermofdisplacementcomponentscanbesimplifiedas:,Supposingnowthedisplacementhastendency,weusedisplacementtendencyfunctiontodenotethedisplacementcomponents:,Thusweget:,Substitutewiththebasicdifferentialequationswhichignoringthebodyforce,weget:,Namely,SpaceProblem,32,空间问题,五位移势函数,为简单起见,不计体力。位移分量的基本微分方程简化为:,现在假设位移是有势的,把位移分量用位移势函数表示为:,从而有,代入不计体力的基本微分方程,得,即,33,Soforanaxialsymmetryproblem,ifwefindasuitablemediationfunction,fromwhichthedisplacementcomponentsandstresscomponentssatisfytheboundaryconditions,thenwegetthecorrectsolutionoftheproblem.,Inordertosolveaxialsymmetryproblems,Lameintroducesadisplacementfunction,Attention:notallthedisplacementfunctionsofspatialproblemshavetendency.Butiftheyhave,thevolumetricstrain.,SixLameDisplacementFunction,Define,Where,SpaceProblem,34,空间问题,取,则。即,为调和函数,由位移势函数求应力分量的表达式为:,为求解轴对称问题,拉甫引用一个位移函数,六拉甫位移函数,令,其中,35,Substitutetheabovefunctionsintothebasicdifferentialfunctionswhichintheabsenceofbodyforce,weget:,Namelyisarepeatedmediationfunction,wecallitLamedisplacementfunction.Therepresentationsofstresscomponentsfromthisfunctionare:,Soforanaxialsymmetryproblem,ifwefindasuitablerepeatedmediationfunction,fromwhichthedisplacementcomponentsandstresscomponentssatisfytheboundaryconditions,thenwegetthecorrectsolutionoftheproblem.,SpaceProblem,36,空间问题,将上式代入不计体力位移分量的基本微分方程,可见:,即是重调和函数,称为拉甫位移函数。由拉甫位移函数求应力分量的表达式为:,可见,对于一个轴对称问题,只须找到恰当的重调和的拉甫位移函数,使得该位移函数给出的位移分量和应力分量能够满足边界条件,就得到该问题的正确解答。,37,SevenExample:halfspacebodywhichisundertheactionofoutwarddrawnconcentratedforcesintheboundary,Considerahalfspacebody,whichbodyforcesareignored.Itreceivesoutwarddrawnconcentratedforcesintheboundary,asshowninfigure.Pleasesolveitsstressesanddisplacements.,Solution:choosethecoordinatesystemasfig.Throughthedimensionalanalysis,LamesdisplacementfunctionispositiveoneorderpoweroflengthcoordinateofwhichFmultipliesR、z、.Afterpreliminarycalculation,wesetdisplacementfunctionas:,Accordingtotherelationsofdisplacementcomponentsandstresscomponentsanddisplacementfunction:,SpaceProblem,38,空间问题,七举例:半空间体在边界上受法向集中力,设有半空间体,体力不计,在其边界上受有法向集中力,如图所示。试求其应力与位移。,解:取坐标系如图。通过量纲分析,拉甫位移函数应是F乘以R、z、等长度坐标的正一次幂,试算后,设位移函数为,根据位移分量和应力分量与位移函数的关系:,39,Wecanobtainthedisplacementcomponentsandthestresscomponents,SpaceProblem,40,空间问题,可以求得位移分量和应力分量,41,Theboundaryconditionsare,AccordingtotheSaint-VenantsPrinciple,wehave,(c),Theboundarycondition(a)issatisfied.Fromboundarycondition(b),weget,(d),Fromcondition(c),weget,(e),Solvingintermsof(d)and(e),weget,SpaceProblem,42,空间问题,由(d)及(e)二式的联立求解,得,43,SubstitutetheobtainedA1andA2intotheforgoingrepresentations,weget,SpaceProblem,44,空间问题,将得出的A1及A2回代,得,45,Amongspatialproblems,iftheelasticitybodysgeometricshape,restraintconditionandanyexternalfactorsaresymmetricalinacertainpoint(anyplanewhichpassesthispointisallsymmetricalone),thenallstresses,strainsanddisplacementsaresymmetricalinthispoint.Thiskindofproblemiscalledsphericallysymmetryproblemofspace.,Accordingtothecharacteristicofsphericallysymmetry,weshouldadoptthesphericalcoordinates.ifwetakeelasticitybodyssymmetricalpointasthecoordinatesorigin,thenallthestresscomponents,straincomponentsanddisplacementcomponentswillbeonlythefunctionofradialcoordinater,withtheothertwocoordinateshavenothingtodowith.,Obviously,sphericallysymmetricproblemscanonlyexistinholloworsolidroundspheroid.,8-4SphericallySymmetricProblemForSpace,SpaceProblem,46,空间问题,在空间问题中,如果弹性体的几何形状、约束情况以及所受的外来因素,都对称于某一点(通过这一点的任意平面都是对称面),则所有的应力、形变和位移也对称于这一点。这种问题称为空间球对称问题。,根据球对称的特点,应采用球坐标表示。若以弹性体的对称点为坐标原点,则球对称问题的应力分量、形变分量和位移分量都将只是径向坐标r的函数,而与其余两个坐标无关。,显然,球对称问题只可能发生于空心或实心的圆球体中。,8-4空间球对称问题,47,One.DifferentialEquationsofEquilibrium,Forsymmetry,thesmallelementonlyhasradialvolumeforce.Fromradialequilibrium,andconsidering,Neglectingthehigherordersmallvariables,wegetthedifferentialequationsofequilibriumforsphericallysymmetricproblems:,Fetchasmallelement.Fetchasmallhexahedronfromtheelastomer.Itisformedbytwopelletfaces,whichdistanceis,andtwopairsofradialplanes,whichangleisrespectively.Forsphericalsymmetry,eachplaneonlyhasnormalstress.Itsstresssituationsareshowninfig.,SpaceProblem,48,空间问题,49,TwoGeometricEquations,ThephysicalequationsforsphericallysymmetricproblemscandirectlybeledoutfromHookeslaw,Ifstresscomponentsareexpressedwithstraincomponents,weget,SpaceProblem,50,空间问题,二几何方程,由于对称,只可能发生径向位移;又由于对称,只可能发生径向正应变及切向正应变,不可能发生坐标方向的剪应变。球对称问题的几何方程为:,三物理方程,球对称问题的物理方程可直接根据虎克定律得来:,将应力用应变表示为:,51,Four.TheBasicDifferentialEquationinTermsofDisplacement,Substitutethegeometricequationsintothephysicalequations,wegettheelasticequations:,Substitutetheaboveequationsintothedifferentialequationsofequilibrium,weget,Thisisknownasthebasicdifferentialequationsforsolvingthesphericallysymmetricproblemsintermsofdisplacement.,SpaceProblem,52,空间问题,四位移法求解的基本微分方程,将几何方程代入物理方程,得弹性方程,再代入平衡微分方程,得,这就是按位移求解球对称问题时所需要用的基本微分方程。,53,Example:ahollowpelletwhichisunderactionoftheevendistributedpressure,considerahollowpellet.Itsinteriorradiusisa,theexteriorisb,theinnerpressureisqa,outerpressureisqb.Attheabsenceofbodyforce,pleasefinditsstressesanddisplacements.,Itssolutionis,Andthestresscomponentsare:,Solution:forignoringthebodyforce,thedifferentialequationforsphericallysymmetricproblemscanbesimplifiedas,SpaceProblem,Five,54,空间问题,五举例:空心圆球受均布压力,设有空心圆球,内半径为a,外半径为b,内压为qa,外压为qb,体力不计,试求其应力及位移。,其解为,得应力分量,解:由于体力不计,球对称问题的微分方程简化为,55,Substitutetheboundaryconditions,intotheaboveformulas,weget,Andthenwegettheradialdisplacementoftheproblem:,Thestressexpressionsare:,SpaceProblem,56,空间问题,于是得问题的径向位移,应力表达式,57,Exercise8.1supposethereisaequalsectionpolewitharbitraryshape.itsdensityis,withitsupperendhungandlowerendfree,whichisshownasfig.Trytoprovethestresscomponents,besuitableforanycondition.,Solution:thestresscomponentsare:,Thebodyforcecomponentsare:,SpaceProblem,58,空间问题,练习8.1设有任意形状的等截面杆,密度为,上端悬挂,下端自由,如图所示。试证明应力分量,能满足所有一切条件。,z,y,解:已知应力分量为,体力分量为,59,OneTheInspectionofDifferentialEquationsofEquilibrium,Obviouslytheyaresatisfied.,Two.TheInspectionofCompatibility,Becausethebodyforceisaconstant,thecompatibilityequ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海邦德职业技术学院《结构设计》2023-2024学年第二学期期末试卷
- 贴片电容生产流程简介
- 企业环保基础知识培训
- 护工与保洁技能培训大纲
- 2025广告预订合同范本
- 2025混凝土班组劳务合同样本
- 2025画册版权、知识产权及注册申请合同协议书范本
- 2025办公室文明合同范本
- 2025年高考历史必修二复习提纲
- 2025实习生合同范本
- 课文《牧场之国》的教学反思
- 欣赏 牧童短笛
- T∕CADERM 3035-2020 严重创伤院内救治流程和规范
- 脐血分血及CIK细胞培养流程
- LNG站、槽车事故案例
- (完整版)螺丝分类命名及编码
- 外墙憎水岩棉保温板施工方案doc
- 水利水电工程毕业设计---水闸设计
- 阿丁尿床了(2)
- CSCO 乳腺癌指南骨转移、脑转移等指南
- 双碱法脱硫设计计算
评论
0/150
提交评论