已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市、许昌市、汝州2017-2018学年高二数学上学期第三次联考试题 理(含解析)第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 双曲线的渐近线方程是( )A. B. C. D. 【答案】C【解析】由,得。所以双曲线的渐近线方程是。选C。2. 已知命题在定义域内是单调函数,则为( )A. 在定义域内不是单调函数B. 在定义域内是单调函数C. 在定义域内不是单调函数D. 在定义域内不是单调函数【答案】A【解析】由全称命题的否定可得为“在定义域内不是单调函数”。选A。3. 设等差数列的首项为,若,则的公差为( )A. B. C. D. 【答案】B【解析】 设等差数列的公差为,则,解得,故选B.4. 下列命题为特称命题的是 ( )A. 任意一个三角形的内角和为 B. 棱锥仅有一个底面C. 偶函数的图象关于轴垂直 D. 存在大于1的实数,使【答案】D【解析】 对于选项A、B、C都为全称命题,选项D中,根据特称命题的概念,可得命题“存在大于的实数,使”中含有存在量词,所以D为特称命题,故选D.5. 若椭圆(0m3)的长轴比短轴长,则 ( )A. B. C. D. 【答案】D【解析】由题意可得,解得。选D.6. “”是“方程表示焦点在上的椭圆”的( )A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】 若方程表示焦点在轴上的椭圆,则,所以, 所以是方程表示焦点在轴上的椭圆的充分不必要条件,故选A.7. 在中,角所对的边分别为,则的周长为( )A. B. C. D. 【答案】C【解析】 因为,所以, 由余弦定理, 得,所以的周长为,故选C.8. 若以双曲线的左右焦点和点为顶点的三角形为直角三角形,则该双曲线的离心率为( )A. B. C. D. 【答案】B【解析】由题意得点为该直角三角形的直角顶点,双曲线的左右焦点分别为 ,则有,解得,所以,因此。选B。9. 已知分别是双曲线的左右焦点,点在此双曲线的右支上,且,则的面积为( )A. B. C. D. 【答案】D【解析】双曲线方程即为,所以,由定义得,又,所以。由余弦定理得,所以,因此的面积为。选D。点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,焦点三角形与双曲线的定义、正(余)弦定理和三角形的面积结合在一起。在求焦点三角形的面积时,可利用定义式的平方及余弦定理得到的形式,再用面积公式计算10. 若,则的最小值为( )A. B. C. D. 【答案】A11. 给出下列三个命题:;或是“”的必要不充分条件,若,则.那么,下列命题为真命题的是( )A. B. C. D. 【答案】C.易知或不能推出“”,但“”能推出或,故为真命题。由得且,所以,所以为真命题。因此为真命题。选C。12. 已知椭圆的左顶点为,上顶点为,过椭圆的右焦点作轴的垂线交直线于点,若直线的斜率是直线的斜率的倍,其中,为坐标原点,则椭圆的离心率的取值范围为( )A. B. C. D. 【答案】D【解析】由题意得直线的方程为,当时,所以点D的坐标为。因此直线OD的斜率为,由题意得,整理得,故,所以。选D。点睛:椭圆的几何性质中,离心率问题是重点,求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求得;(2)列出关于的齐次方程(或不等式),然后根据,消去b,转化成关于e的方程(或不等式)求解第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题“若,则”的否命题为_.【答案】若,则【解析】由否命题的定义可得所给命题的否命题为“若,则”。答案:若,则14. 在中,角所对的边分别为,则 _.【答案】【解析】 在中,由,则,所以,由正弦定理可得.15. 设变量满足约束条件,则的最大值是_.【答案】【解析】画出不等式组表示的平面区域,如图所示。表示可行域内的点与点连线的斜率。结合图形得,可行域内的点A与点连线的斜率最大。由,解得。所以点A的坐标为。答案:点睛:利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域(2)考虑目标函数的几何意义,将目标函数进行变形常见的类型有截距型(型)、斜率型(型)和距离型(型)(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解(4)求最值:将最优解代入目标函数即可求出最大值或最小值.。16. 已知焦距为的双曲线的左右顶点分别为是双曲线上异于的任意两点,若 依次成等比数列,则双曲线的标准方程是_.【答案】【解析】 设,则, 由于成等比数列,则, 又,所以,即,所以, 又,即, 所以双曲线的方程为. 点睛:本题考查了双曲线的标准方程的求解,其中解答中涉及到双曲线的几何性质、等比中项公式等知识点的应用,同时着重考查了推理与运算能力,解答中认真审题、准确计算是解答的关键三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知函数.(1)若,求的最小值,并指出此时的值;(2)求不等式的解集.【答案】(1)的最小值为,此时.(2).【解析】试题分析:(1)根据表达式的特点得到,利用均值不等式求得最值;(2)分式不等式转化为整式不等式求解即可。解析:(1) ,当且仅当即时,取等号,故的最小值为,此时,(2)由得,故所求不等式的解集为18. (1)已知点的坐标为,直线相交于点,且它们的斜率之积是,求动点的轨迹方程;(2)已知定点的坐标为为动点,若以线段为直径的圆恒与轴相切,求动点的轨迹方程.【答案】(1).(2).【解析】试题分析:(1)设出动点的坐标,根据直线的斜率之积是列出等式求解即可。(2)设,则线段的中点为,连,则轴,由为直角三角形斜边上的中线可得,求出x,y间的关系式即为所求。试题解析:(1)设动点,因为直线的斜率之积是,所以,整理得,所以动点的轨迹方程为.(2)设动点,线段的中点为,圆与轴相切于,连接,所以轴,因为为直角三角形斜边上的中线,所以,由,化简得,所以动点的轨迹方程为.19. 设“关于的不等式的解析为”,“函数在区间上有零点”.(1)若为真,求的取值范围;(2)若为假,为真,求的取值范围.【答案】(1).(2).【解析】试题分析:(1)由命题为真,则,即可求解实数的取值范围.(2)根据为假,为真,得中一真一假,分类讨论即可求解实数的取值范围.试题解析:(1)函数是增函数,所以若为真,则,解得.(2)若为真,则,即,解得,因为为假,为真,所以中一真一假,若真假,则;若假真,则,综上,的取值范围是.20. 已知椭圆的与椭圆有相同的焦点,且椭圆过点.(1)求的长轴长;(2)设直线与交于两点(在的右侧),为原点,求.【答案】(1).(2).【解析】试题分析:(1)根据题意,列出,求得的值,即可得到椭圆的长周长;(2)把直线的方程代入椭圆的方程,利用根与系数的关系得,得的坐标,即可求解故.试题解析:(1)由题意得设椭圆的标准方程为,则,所以,则的长轴长为.(2)由,得,解得,则,故.21. 已知数列满足.(1)求数列的通项公式;(2)若正整数满足,求的值.【答案】(1).(2).【解析】试题分析:(1)由题意得,(),与条件中所给的式子相减可得,解得。验证当时,也满足即可。(2)根据列项相消法求得,由题意得,解方程即可。试题解析:(1),()两式相减得,当时,解得,也满足,所以.(2),令,解得.点睛:(1)根据本题的特点选择用仿写、作差的方法求得数列的通项,在仿写时不要忘了这一条件,故在最后要验证时是否满足。(2)数列求和的方法也比较多,解题时要根据通项公式的特征合理选择,常见的方法有公式法、分组法、列项相消法、错位相减法等。22. 如图,椭圆的离心率为,且椭圆经过点,已知点,过点的动直线与椭圆相交于两点,与关于轴对称.(1)求的方程;(2)证明:三点共线.【答案】(1).(2)证明见解析.【解析】试题分析:(1)由椭圆的离心率为,且过点及可得可组成关于的方程组,解方程组可得椭圆方程。(2)当直线与轴垂直时,结论成立;当直线的斜率存在时,设出直线的方程,与椭圆方程联立消元后得到二次方程,利用根据系数的关系并结合斜率公式可得,从而可得结论成立。试题解析:(1)解:由已知得,解得,所以椭圆的方程为.(2)证明:当直线与轴垂直时,显然有三点共线。当直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版二年级语文上册第15课《八角楼上》精美课件
- 吉首大学《会展策划与管理》2021-2022学年第一学期期末试卷
- 《机械设计基础》-试卷17
- 吉林艺术学院《现代教育研究方法》2021-2022学年第一学期期末试卷
- 2024年共建单位挂牌合同范本
- 吉林师范大学《篆书理论与技法II》2021-2022学年第一学期期末试卷
- 2024年大亚湾旅游合作协议书模板范本
- 2022年公务员多省联考《申论》真题(山西省市卷)及答案解析
- 面粉厂小型设备转让协议书范文
- 钢结构建筑顶升复位专项方案
- 初中校本课程教材《心理健康教育》
- 高中生物人教版必修一动画大全课件
- 部编版五年级道德与法治上册第8课《美丽文字 民族瑰宝》优质课件+说课稿
- 仓储物流安全隐患排查表-附带法规依据
- 新概念英语第二册课文(全中文)
- DB32T 4031-2021 建筑垃圾填筑路基设计与施工技术规范
- 湖南省药品零售企业药店药房名单目录
- DB4401-T 10.5-2019 +反恐怖防范管理++第5部分:教育机构-(高清现行)
- 尿毒症脑病课件
- 小学体育与健康人教二年级全一册第一部分课程目标与教学内容设计构想体育教学设计武术
- 广告制作技术方案
评论
0/150
提交评论