




已阅读5页,还剩674页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论与数理统计,教师:崔冉冉河南工业大学理学院,1,教材:概率论与数理统计第三版王松桂等编科学出版社,参考书:1.概率论与数理统计浙江大学盛骤等编高等教育出版社2.概率论与数理统计魏振军编中国统计出版社,2,序言,?,概率论是研究什么的?,3,人们所观察到的现象大体上分成两类:1.确定性现象或必然现象事前可以预知结果的:即在某些确定的条件满足时,某一确定的现象必然会发生,或根据它过去的状态,完全可以预知其将来的发展状态。2.偶然性现象或随机现象事前不能预知结果:即在相同的条件下重复进行试验时,每次所得到的结果未必相同,或即使知道它过去的状态,也不能肯定它将来的状态。,4,随机现象特点:不确定性与统计规律性概率论研究和揭示随机现象的统计规律性的科学研究方式:从数量的侧面研究随机现象统计规律(通过数据去研究)“八月十五云遮月,正月十五雪打灯”,5,概率论起源,概率统计是一门古老的学科,它起源于十七世纪资本主义上升的初期。物质生活的丰富,人们开始重视精神娱乐。在桥牌活动中,经常要判断某种花色在对方手中的分配;在掷色子中,要判断哪点出现的次数最多。概率论与数理统计正是从研究这类问题开始的。尽管发展较早,但形成一门严谨的学科是在本世纪三十年代,前苏联数学家柯尔莫奇洛夫给出了概率的公理化定义后,才得以迅速发展。随着计算机的问世,六十年代后,形成了许多新的统计分支:时间序列分析,统计推断等等。目前它几乎遍及所有的学科技术领域。,6,第一章随机事件,1.1基本概念1.1.1随机试验与事件1.1.2随机事件及其运算,7,1.1.1随机试验与事件,随机试验(试验)的特点:1.可在相同条件下重复进行;2.每次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果。试验常用“E”表示,8,E1:掷一颗骰子,观察所掷的点数是几;E2:工商管理部门抽查产品是否合格;E3:观察某城市某个月内交通事故发生的次数;E4:已知物体长度在a和b之间,测量其长度;E5:对某只灯泡做试验,观察其使用寿命;E6:对某只灯泡做试验,观察其使用寿命是否小于200小时。,(随机)试验的例子,9,样本空间:试验的所有可能结果所组成的集合称为样本空间。记为:,样本点:试验的单个结果或样本空间的单元素称为样本点。,10,E1:掷一颗骰子,观察所掷的点数是几;E2:工商管理部门抽查产品是否合格;合格品,不合格品E3:观察某市某月内交通事故发生的次数;E4:物体长度在a和b之间,测量其长度;E5:对某只灯泡做试验,观察其使用寿命;E6:对某只灯泡做试验,观察其使用寿命是否小于200小时。小于200小时,不小于200小时,(随机)试验的例子,11,随机事件:样本空间的任意一个子集称为随机事件,简称“事件”.记作A、B、C。任何事件均可表示为样本空间的某个子集.基本事件:一个随机事件只含有一个试验结果。事件A发生当且仅当试验的结果是子集A中的元素。两个特殊事件:必然事件:样本空间包含了所有的样本点,且是自身的一个子集,在每次试验中总是发生。不可能事件:不包含任何的样本点,也是样本空间的一个子集,在每次试验中总不发生。注意:样本点和基本事件的区别。,12,解:为基本事件,例1.1.1掷一颗色子,用表示所掷点数。B表示“偶数点”,C表示“奇数点”,D表示“四点或四点以上”。写出样本空间,指出哪些是基本事件,表示B,C,D。,13,1.1.2、事件的关系与运算,既然事件是一个集合,因此有关事件间的关系、运算及运算规则也就按集合间的关系、运算及运算规则来处理。,14,是试验E的样本空间,A,B,C是事件1.包含关系:“事件A发生必有事件B发生”记为AB,称A包含于B。ABAB且BA.,15,2.和事件:“事件A与事件B至少有一个发生”,记作AB,推广:n个事件A1,A2,An至少有一个发生,记作,16,3.积事件:事件A与事件B同时发生,记作ABABA和B的公共部分,推广:n个事件A1,A2,An同时发生,记作A1A2An,17,互斥的事件(也称互不相容事件):即事件A与事件B不可能同时发生。AB,18,4.差事件:AB称为A与B的差事件,表示事件A发生而事件B不发生,A去除A和B的公共部分,19,互逆的事件:AB,且AB,注意:对立一定互斥,互斥不一定对立,20,事件的运算,1、交换律:ABBA,ABBA2、结合律:(AB)CA(BC),(AB)CA(BC)3、分配律:(AB)C(AC)(BC),(AB)C(AC)(BC)4、对偶(DeMorgan)律:,21,例:甲、乙、丙三人各向目标射击一发子弹,以A、B、C分别表示甲、乙、丙命中目标,试用A、B、C的运算关系表示下列事件:,22,某人向目标射击,以A表示事件“命中目标”,P(A)=?考虑事件在一次试验中发生可能性的大小的数字度量概率。,?,1.2事件的概率,23,定义1.2.1在相同条件下,事件A在n次重复试验中发生m次,则称比值m/n称为事件A在n次试验中发生的频率,记为fn(A).,1.2.1事件的频率,频率的性质:(1)非负性;0fn(A)1;(2)规范性:fn()1;fn()=0(3)可加性:若AB,则fn(AB)fn(A)fn(B).注意:称为“n次试验发生的频率”,是因为随着n的取值不同,fn(A)的值有可能不同。,24,历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。实验者nnHfn(H)DeMorgan204810610.5181Buffon404020480.5069K.Pearson1200059810.4984K.Pearson24000120120.5005从表中不难发现:事件A在n次试验中发生的频率具有随机波动性。当n较小时,波动的幅度较大;当n较大时,波动的幅度较大;最后随着n的逐渐增大,频率fn(A)逐渐稳定于固定值0.5.,25,实践证明:当试验次数n增大时,fn(A)逐渐趋向一个稳定值。可将此稳定值记作P(A),作为事件A的概率。但是在一定条件下做重复试验,其结果可能不同;并且没有必要,不可能对每个事件都做大量的试验,从中得到频率的稳定值。我们从频率的性质出发,给出度量事件发生的可能性大小的量概率的定义及性质。,26,1.2.2.概率的公理化定义,定义1.2.2若对随机试验E所对应的样本空间中的每一事件A,定义一个实数P(A)与之对应,集合函数P(A)满足条件:(1)非负性:P(A)0;(2)规范性:P()1;(3)可列可加性:若事件A1,A2,,两两互斥,即AiAj,(ij),i,j1,2,有P(A1A2)P(A1)P(A2)+.则称P(A)为事件A的概率。,27,概率的性质:(1)P()=0;(2)有限可加性:设事件A1,A2,An两两斥,即AiAj,(ij),i,j1,2,n,则有P(A1A2An)P(A1)P(A2)+P(An);,(3)互补性:P(A)1P(A);(4)单调不减性:若事件,则P(B-A)=P(B)-P(A),P(B)P(A)注意:一般情况下,P(B-A)=P(B)-P(AB),28,(5)加法公式:对任意两事件A、B,有P(AB)P(A)P(B)P(AB)该公式可推广到任意n个事件A1,A2,An的情形;(6)可分性:对任意两事件A、B,有P(A)P()P(AB).,29,某市有甲,乙,丙三种报纸,订每种报纸的人数分别占全体市民人数的30%,其中有10%的人同时定甲,乙两种报纸.没有人同时订甲乙或乙丙报纸.求从该市任选一人,他至少订有一种报纸的概率.,EX,解:设A,B,C分别表示选到的人订了甲,乙,丙报,30,例在110这10个自然数中任取一数,求(1)取到的数能被2或3整除的概率,(2)取到的数即不能被2也不能被3整除的概率,(3)取到的数能被2整除而不能被3整除的概率。,解:设A=取到的数能被2整除;B=取到的数能被3整除,故,31,若某试验E满足:1.有限性:样本空间2.等可能性:则称E为古典概型也叫等可能概型。,1.3古典概型,32,古典概型中的概率的求法:,试验E的结果有有限种:样本点是有限个:1,,n=12ni是基本事件,且各自发生的概率相等。于是,有1=P()=P(12n)=P(1)+P(2)+P(n)=nP(i),i=1,2,n。从而,P(i)=1/n,i=1,2,n.,33,因此,若事件A包含k个基本事件,即,则,34,例1:掷色子两次,求两次之和为7的概率。,解:=(1,1),(1,2),(1,6)(2,1),(6,6),A=(1,6),(6,1),(2,5)(5,2),(3,4),(4,3),35,古典概型的两类基本问题,乘法公式:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法。(也可推广到分若干步)加法公式:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。(也可推广到若干途径)这两公式的思想贯穿着整个概率问题的求解。,复习:排列与组合的基本概念,36,1、抽取问题例2:有外观相同的三极管6只,按电流放大系数分类,4只属甲类,2只属乙类。求A=抽到两只甲类三极管的概率,按下列三种方案抽取三极管两只:(1).随机抽两只;(2).无放回抽两只;(3).有放回抽两只。解:,37,例3:有外观相同的三极管6只,按电流放大系数分类,4只属甲类,2只属乙类。不放回抽两只。求下列事件的概率:B=抽到两只同类,C=至少抽到一只甲类,D=抽到两只不同类。解:B=甲甲乙乙(两种情况互斥)C=乙乙的补事件,D是B的补事件,,38,例4有外观相同的三极管6只,按电流放大系数分类,4只属甲类,2只属乙类。有放回抽5次,求E=恰有2次抽到甲的概率。解:,延伸到一般:设N件产品中有K件甲类(次品),N-K件乙类(正品),K0,P(B)0时,则P(AB)P(A)P(B|A).P(AB)P(B)P(A|B).称为事件A、B的概率乘法公式。,还可推广到三个事件的情形:P(ABC)P(A)P(B|A)P(C|AB).一般地,有下列公式:P(A1A2An)P(A1)P(A2|A1).P(An|A1An1).,52,例1.4.3:一批灯泡共100只,其中10只是次品,其余为正品,作不放回抽取,每次取一只,求:第三次才取到正品的概率。解:设Ai=第i次取到正品,i=1,2,3。A=第三次才取到正品。则:,53,例10个纸团有3个奖,10个人各抽1个(无放回的抽),Ai=第i个人抽中奖。则,(3)B=前2个人都抽中奖,(抽中奖的概率与次序无关),(2)A=前2个人都没抽中奖,(4)C=前两个人恰有一个抽中奖,可见:P(B)+P(C)+P(D)=1,54,把要考虑的事件化为要考虑事件与若干个两两互斥事件的交事件的并来考虑.,(5)D=第2个人抽中奖(第1人可能抽中也可能不中),=,(6)E=第3个人抽中奖,55,1.4.3全概率公式定义1.4.2事件组B1,B2,Bn(n可为),称为样本空间的一个划分,若满足:,定理1.4.1设B1,,Bn是的一个划分,且P(Bi)0,(i1,n),则对任何事件A有,56,它的理论和实用意义在于:在较复杂情况下,直接计算P(A)不容易,但总可以适当地构造一组两两互斥的Bi,使A伴随着某个Bi的出现而出现,且每个P(ABi)容易计算。可用所有P(ABi)之和计算P(A).,57,例1.4.5:一批同型号的螺钉由编号为I,II,III的三台机器共同生产。各台机器生产的螺钉占这批螺钉的比例分别为35%,40%,25%。各台机器生产的螺钉的次品率分别为3%,2%和1%。求该批螺钉中的次品率。解:设A=螺钉是次品,B1=螺钉由I号机器生产,B2=螺钉由II号机器生产,B3=螺钉由III号机器生产。则,58,P(B1)=0.35,P(B2)=0.40,P(B3)=0.25,P(A|B1)=0.03,P(A|B2)=0.02,P(A|B3)=0.01。,由全概率公式,得,59,思考:上例中,若已知取到的是次品,则求是第I台机器生产的概率是多少?,60,定理1.4.2设B1,,Bn是的一个划分,且P(Bi)0,(i1,n),则对任何事件A,有,称为贝叶斯公式。,1.4.4贝叶斯公式,61,条件概率,条件概率小结,缩减样本空间,定义式,乘法公式,全概率公式,贝叶斯公式,62,1.5事件的独立性两事件独立,定义1.5.1设A、B是两事件,P(A)0,若P(B)P(B|A)则称事件A与B相互独立。表明事件B的发生不影响A的发生。等价于:P(AB)=P(A|B)P(B)P(A)P(B),63,例1:从一副不含大小王的扑克牌中任取一张,记A=抽到K,B=抽到黑色的牌。问事件A,B是否独立?,解:由于P(A)=4/52=1/13,P(B)=26/52=1/2,P(AB)=2/52=1/26故,P(AB)=P(A)P(B).这说明事件A,B独立。,64,思考:互斥和独立之间的联系:若A、B互斥,且P(A)0,P(B)0,则A与B不独立。P(AB)=0,P(A)0,P(B)0,P(AB)P(A)P(B)其逆否命题是:若A与B独立,且P(A)0,P(B)0,则A与B一定不互斥。,请问:能否在样本空间中找到两个事件,它们既相互独立又互斥?,所以,与独立且互斥。不难发现:(或)与任何事件都独立。,可以,65,定理1.5.1以下四件事等价:(1)事件A、B相互独立;(2)事件A、B相互独立;(3)事件A、B相互独立;(4)事件A、B相互独立。,证明:仅证A与B独立。P(AB)=P(AAB)=P(A)P(AB)=P(A)P(A)P(B)=P(A)1P(B)=P(A)P(B),概率的性质,A与B独立,66,多个事件相互独立定义1.5.2设A1,A2,An是n个事件,如果对任意k(1kn),任意的1i1i2ikn,具有等式P(Ai1Ai2Aik)P(Ai1)P(Ai2)P(Aik)则称n个事件A1,A2,An相互独立。,对于三个事件A,B,C,若P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)个等式同时成立,称事件A,B,C相互独立。n个事件相互独立要满足等式的个数为,67,事件独立性的应用,在可靠性理论上的应用例如图,1、2、3、4、5表示继电器触点,假设每个触点闭合的概率为p,且各继电器接点闭合与否相互独立,求L至R是通路的概率。,68,设A-L至R为通路,Ai-第i个继电器通,i=1,2,5,由全概率公式,69,例1.5.2验收100件产品方案如下,从中任取3件进行独立测试,如果至少有一件被断定为次品,则拒绝接收此批产品。设一件次品经测试后被断定为次品的概率为0.95,一件正品经测试后被断定为正品的概率为0.99,并知这100件产品恰有4件次品。求该批产品能被接收的概率。,解:设A=该批产品被接收,Bi=取出3件产品中恰有i件是次品,i=0,1,2,3。则,70,因三次测试相互独立,故P(A|B0)=0.993,P(A|B1)=0.992(1-0.95),P(A|B2)=0.99(1-0.95)2,P(A|B3)=(1-0.95)3。由全概率公式,得,71,例1.5.3若干人独立地向一移动目标射击,每人击中目标的概率都是0.6。求至少需要多少人,才能以0.99以上的概率击中目标?解:设至少需要n个人才能以0.99以上的概率击中目标。令A=目标被击中,Ai=第i人击中目标,i=1,2,n。则A1,A2,An相互独立。故,也相互独立。,72,因A=A1A2An,得P(A)=P(A1A2An),问题化成了求最小的n,使1-0.4n0.99。解不等式,得,73,第一章小结本章由六个概念(随机试验、样本空间、事件、概率、条件概率、独立性),四个公式(加法公式、乘法公式、全概率公式、贝叶斯公式)和一个概型(古典概型)组成,74,第二章随机变量,随机变量离散型随机变量连续型随机变量随机变量的函数的分布,75,2.1随机变量的定义关于随机变量(及向量)的研究,是概率论的中心内容这是因为,对于一个随机试验,我们所关心的往往是与所研究的特定问题有关的某个或某些量,而这些量就是随机变量也可以说:随机事件是从静态的观点来研究随机现象,而随机变量则是一种动态的观点,一如数学分析中的常量与变量的区分那样变量概念是高等数学有别于初等数学的基础概念同样,概率论能从计算一些孤立事件的概念发展为一个更高的理论体系,其基础概念是随机变量,76,在实际问题中,随机试验的结果可用数量来表示:一方面,有些试验,其结果与数有关(试验结果就是一个数);另一方面,有些试验,其结果看起来与数值无关,但可引进一个变量来表示试验的各种结果。即,试验结果可以数量化。从而转化到数域上去考虑问题,就可以把高数中的思想概念应用过来.,77,定义2.1.1.设=是试验的样本空间,如果对每个,总有一个实数X()与之对应,则称上的实值函数X()为E的一个随机变量。随机变量常用X、Y、Z或、等表示。,顾名思义,随机变量就是“其值随机会而定”的变量,正如随机事件是“其发生与否随机会而定”的事件一个随机试验有许多可能的结果,到底出现哪一个要看机会,即有一定的概率最简单的例子如掷骰子,掷出的点数X是一个随机变量,它可以取1,6等6个值到底是哪一个,要等掷了骰子以后才知道因此又可以说,随机变量就是试验结果的函数.,78,随机变量概念的产生是概率论发展史上重大的事件。引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究扩充到对随机变量及其取值规律的研究。,79,请举几个实际中随机变量的例子,在投篮试验中,用0表示投篮未中,1表示罚篮命中,3表示三分线外远投命中,2表示三分线内投篮命中。2.在掷硬币试验中,用1表示带国徽或人头的一面朝上,0表示另一面朝上.,80,请举几个实际中随机变量的例子,3.一部电梯一年内出现故障的次数。用i=电梯一年内发生i次故障,i=0,1,样本空间=i,=0,1,2,令X(i)=i,i=0,1,2X()的值域为0,1,2,4.用X表示单位时间内某信号台收到呼叫的次数,则X是一个随机变量。事件收到呼叫X1;没有收到呼叫X=0,81,随机变量,所有取值可以逐个列举,全部可能取值不仅有无穷多,而且不能一一列举,充满某些区间。,2.2离散型随机变量随机变量的分类,例如:“取到次品的个数”,“收到的呼叫数”等例如:“电视机的使用寿命”,实际中常遇到的“测量误差”等。,82,定义若随机变量X取值x1,x2,xn,且取这些值的概率依次为p1,p2,pn,则称X为离散型随机变量,而称PX=xk=pk,(k=1,2,)为X的分布律或概率分布。可表为XPX=xk=pk,(k=1,2,),也可用表格形式给出:,Xx1x2xKPkp1p2pk,2.2.1离散型随机变量的概率分布,83,(1)pk0,k1,2,;(2),例1设袋中有5只球,其中有2只白3只黑。现从中任取3只球(不放回),求抽得的白球数X为k的概率。解k可取值0,1,2,分布律的性质,用这两条性质判断一个数列是否是概率分布。,84,例2设随机变量X的概率分布为,确定常数a。,解:依据概率分布的性质,欲使上述数列为概率分布,应有,85,从中解得,这里用到了幂级数展开式,86,例2.2.1:,如上图所示,电子线路中装有两个并联继电器。设这两个继电器是否接通具有随机性,且彼此独立。已知各电器接通的概率为0.8,记X为线路中接通的继电器的个数。求(1).X的概率分布;(2).线路接通的概率。,87,解:(1).记Ai=第i个继电器接通,i=1,2.因两个继电器是否接通是相互独立的,所以A1和A2相互独立,且P(A1)=P(A2)=0.8.下面求X的概率分布:首先,X可能取的值为:0,1,2.PX=0=P表示两个继电器都没接通,88,PX=1=P恰有一个继电器接通,PX=2=P两个继电器都接通,89,所以,X的分布律为,(2).因线路是并联电路,所以P(线路接通)=P(只要一个继电器接通)=PX1=PX=1+PX=2=0.32+0.64=0.96.,90,2.2.2常用的离散型分布,1.(0-1)分布,两点分布,设E是一个只有两种可能结果的随机试验,用=1,2表示其样本空间。P(1)=p,P(2)=1-p.,则称X服从参数p的(01)分布(或两点分布),记成XB(1,p)。,91,例2.2.2200件产品中,有196件正品,4件次品,今从中随机地抽取一件,若规定,则PX=1=196/200=0.98,PX=0=4/200=0.02.故X服从参数为0.98的两点分布,即XB(1,0.98)。,92,若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。记作XB(n,p)其分布律为:,2.二项分布定义设试验E只有两个结果,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验.,93,例5:某射手每次射击时命中10环的概率为p,现进行4次独立射击,求恰有k次命中10环的概率。,解:用X表示4次射击后,命中10环的次数,则,其中“”表示未中,“”表示命中。,94,易见:X的概率分布为,推广到n次独立射击,即可得,95,伯努利概型对试验结果有下述要求:,(1).每次试验条件相同;,二项分布描述的是:n重伯努利试验中,事件A发生的次数X的概率分布。,(3).各次试验相互独立。,(2).每次试验只考虑两个互逆结果A或,96,例2.2.4已知某类产品的次品率为0.2,现从一大批这类产品中随机地抽查20件,问恰有k件次品的概率是多少?,解:设X为20件产品中次品的个数,则,Xb(20,0.2),,这是不放回抽取,但抽取的数量比产品的数量小很多,故可当不放回抽取,97,则有,20件产品中恰有k件次品的概率分布表,教材30页表2.1,98,下面我们研究二项分布b(n,p)和两点分布b(1,p)之间的一个重要关系。,设试验E只有两个结果:A和。,将试验E在相同条件下独立地进行n次,记X为n次独立试验中A出现的次数。描述第i次试验的随机变量记作Xi,则Xib(1,p),且X1,X2,Xn相互独立(随机变量相互独立的严格定义将在第三章讲述)。则有,X=X1+X2+Xn.,这表明:一个服从二项分布的随机变量可以表示成n个相互独立的服从两点分布的随机变量之和。,99,设随机变量X所有可能取的值为:0,1,2,概率分布为:,3.泊松分布,其中0为常数,则称随机变量X服从参数为的泊松分布,记为XP()。,100,例某一无线寻呼台,每分钟收到寻呼的次数X服从参数=3的泊松分布。求:(1).一分钟内恰好收到3次寻呼的概率;(2).一分钟内收到2至5次寻呼的概率。.,解:,(1).PX=3=P(3;3)=(33/3!)e-30.2240;(2).P2X5=PX=2+PX=3+PX=4+PX=5=(32/2!)+(33/3!)+(34/4!)+(35/5!)e-30.7169.,101,解:,例2.2.6某一城市每天发生火灾的次数X服从参数为0.8的泊松分布。求该城市一天内发生3次以上火灾的概率。,PX3=1-PX3=1-(PX=0+PX=1+PX=2)=1-(0.80/0!)+(0.81/1!)+(0.82/2!)e-0.80.0474.,102,历史上,泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入的。,二项分布与泊松分布的关系,定理(泊松定理):对二项分布B(n,p),当n充分大,p又很小时,对任意固定的非负整数k,有近似公式,103,泊松定理表明,泊松分布是二项分布的极限分布,当n很大,p很小时,二项分布就可近似地看成是参数=np的泊松分布,104,例2.2.5某出租汽车公司共有出租车400辆,设每天每辆出租车出现故障的概率为0.02,求:一天内没有出租车出现故障的概率。,解:将观察一辆车一天内是否出现故障看成一次试验E。因为每辆车是否出现故障与其它车无关,于是,观察400辆出租车是否出现故障就是做400次伯努利试验。设X表示一天内出现故障的出租车数,则Xb(400,0.02)。令=np=4000.02=8,于是,P一天内没有出租车出现故障=PX=0=b(0;400,0.02)=0.98400=0.000309(80/0!)e-8=0.0003355.,105,例设某国每对夫妇的子女数X服从参数为的泊松分布,且知一对夫妇有不超过1个孩子的概率为3e-2.求任选一对夫妇,至少有3个孩子的概率。,解:由题意,106,小结,本节首先介绍了随机变量的基本概念与分类,接着介绍离散型随机变量及其概率分布;然后介绍三种常见的离散型概率分布:两点分布、二项分布、泊松分布及其关系。,对于离散型随机变量,如果知道了其概率分布,也就知道了它取各个可能值的概率。,107,连续型随机变量X所有可能取值充满若干个区间。对这种随机变量,不能象离散型随机变量那样,指出其取各个值的概率,给出概率分布。而是用“概率密度函数”表示随机变量的概率分布。,2.3连续型随机变量,108,2.3.1直方图例2.3.1某工厂生产一种零件,由于生产过程中各种随机因素的影响,零件长度不尽相同。现测得该厂生产的100个零件长度(单位:mm)如下:,129,132,136,145,140,145,147,142,138,144,147,142,137,144,144,134,149,142,137,137,155,128,143,144,148,139,143,142,135,142,148,137,142,144,141,149,132,134,145,132,140,142,130,145,148,143,148,135,136,152,141,146,138,131,138,136,144,142,142,137,141,134,142,133,153,143,145,140,137,142,150,141,139,139,150,139,137,139,140,143,149,136,142,134,146,145,130,136,140,134,142,142,135,131,136,139,137,144,141,136.,这100个数据中,最小值是128,最大值是155。,109,作频率直方图的步骤,(1).先确定作图区间a,b;,a=最小数据-/2,b=最大数据+/2,,是数据的精度。,本例中=1,a=127.5,b=155.5。,(2).确定数据分组数m=7,组距d=(ba)/m,本例d=4,子区间端点ti=a+id,i=0,1,m;这样使数据不落在区间的端点上。,110,(3).计算落入各子区间内观测值频数ni=#xjti1,ti),j=1,2,n,频率fi=ni/n,i=1,2,m;,111,(4).以小区间ti-1,ti为底,yi=fi/d(i=1,2,m)为高作一系列小矩形(面积为频率),组成了频率直方图,简称直方图。,112,由于概率可以由频率近似,因此这个直方图可近似地刻画零件长度的概率分布情况。,用上述直方图刻画随机变量X的概率分布情况是比较粗糙的。为更加准确地刻画X的概率分布情况,应适当增加观测数据的个数,同时将数据分得更细一些。当数据越来越多,分组越来越细时,直方图的上方外形轮廓就越来越接近于某一条曲线,这条曲线称为随机变量X的概率密度曲线,可用来准确地刻画X的概率分布情况。,113,2.3.2概率密度函数,定义2.3.1若存在非负可积函数f(x),使随机变量X取值于任一区间(a,b的概率可表示成,则称X为连续型随机变量,f(x)为X的概率密度函数,简称概率密度或密度。,114,这两条性质是判定函数f(x)是否为某随机变量X的概率密度函数的充要条件。,密度函数的性质,f(x)与x轴所围面积等于1。,(非负性),(归一性),115,(3).对f(x)的进一步理解:,故,X的概率密度函数f(x)在x这一点的值,恰好是X落在区间x,x+x上的概率与区间长度x之比的极限。这里,如果把概率理解为质量,f(x)相当于物理学中的线密度。,定积分中值定理,平均概率,116,(4).连续型随机变量取任意指定值的概率为0.,即:,a为任意给定值。,这是因为:,117,可见:,由P(A)=0,不能推出A=;,对连续型随机变量X,有,118,例已知随机变量X的概率密度为1)试确定k值,2)求PX0.1,解:,119,2.3.3常用的连续型分布,1.均匀分布若Xf(x),则称X在a,b内服从均匀分布。记作XUa,b,对任意实数c,d(ac0,则称X服从参数为和的正态分布。,125,(1)单峰对称密度曲线关于直线x=对称;f()maxf(x).,正态分布有两个特性:,另外,当x时,f(x)0,这说明:曲线f(x)向左右伸展时,越来越贴近x轴。即f(x)以x轴为渐近线。,126,(2)决定了图形的中心位置,决定了图形峰的陡峭程度。,127,标准正态分布参数0,21的正态分布称为标准正态分布,记作XN(0,1)。,128,分布函数表示为,密度函数表示为,129,它的依据是下面的定理:,标准正态分布的重要性在于,任何一个一般的正态分布都可以通过线性变换转化为标准正态分布。,根据定理2.3.1,只要将标准正态分布的分布函数制成表,就可以解决一般正态分布的概率计算问题。,定理2.3.1,130,书末附有标准正态分布函数数值表,有了它,可以解决一般正态分布的概率计算问题。,标准正态分布表,表中给出的是x0时,(x)的取值;,131,132,例2.3.4假设某地区成年男性的身高(单位:cm)XN(170,7.692),求该地区成年男性的身高超过175cm的概率。,解:根据假设XN(170,7.692),知,事件X175的概率为,133,例一种电子元件的使用寿命(小时)服从正态分布(100,152),某仪器上装有3个这种元件,三个元件损坏与否是相互独立的.求:使用的最初90小时内无一元件损坏的概率.,解:设Y为使用的最初90小时内损坏的元件数,故,则YB(3,p),,其中,正态分布表,134,解:设车门高度为h,按设计要求,P(Xh)0.01,或P(Xh)0.99,,下面我们来求满足上式的最小的h。,例2:公共汽车车门的高度是按成年男性与车门顶头碰头机会在0.01以下来设计的。设某地区成年男性身高(单位:cm)XN(170,7.692),问车门高度应如何确定?,135,因为XN(170,7.692),求满足P(Xh)0.99的最小h。,故,当汽车门高度为188厘米时,可使男子与车门碰头机会不超过0.01。,136,2.3.4随机变量的分布函数分布函数的概念,定义2.3.2设X是随机变量,对任意实数x,事件Xx的概率PXx称为随机变量X的分布函数。记为F(x),即F(x)PXx,-x+.,137,分布函数的性质,1.单调不减性:若ab,则有F(a)F(b)且PaXb=PXb-PXa=F(b)-F(a)它表明随机变量落在区间(a,b上的概率可以通过分布函数来计算。2.归一性:对任意实数x,0F(x)1,且,138,一般地,对离散型随机变量XPX=xkpk,k1,2,其分布函数为,例2.3.5设随机变量X具分布律如右表,解,试求出X的分布函数。,139,连续型随机变量的分布函数,即分布函数是密度函数的变上限积分。,由上式,得:在f(x)的连续点,有,若X是连续型随机变量,f(x)是X的密度函数,F(x)是分布函数,则对任意xR,总有,140,解:,例2.3.6:设随机变量,求其分布函数。,当xa时,有f(x)=0,F(x)=0;,对xb,有,求连续型随机变量的分布函数,141,即,142,解:,求F(x).,143,对x1,有F(x)=1.,144,即,145,本讲首先介绍连续型随机变量、直方图、概率密度函数及性质;然后介绍了三种常用的连续型随机变量:均匀分布;指数分布和正态分布;最后介绍随机变量的分布函数。分别讨论了离散型随机变量的概率分布和分布函数的关系,连续型随机变量的概率密度和分布函数的关系等。,小结,146,2.4一维随机变量函数的分布,问题的提出,在实际中,人们有时对随机变量的函数更感兴趣。如:已知圆轴截面直径D的分布,求截面面积的分布。,一般地,设随机变量X的分布已知,求Y=g(X)(设g是连续函数)的分布。,这个问题无论在理论上还是在实际中都非常重要。,147,2.4.1离散型随机变量函数的分布律,设X一个随机变量,分布律为XPXxkpk,k1,2,若yg(x)是一元单值实函数,则Yg(X)也是一个随机变量。求Y的分布律.,148,解:当X取值-1,0,1,2时,Y取对应值4,1,0和1。,由PY=0=PX=1=0.1,PY=1=PX=0+PX=2=0.3+0.4=0.7,PY=4=PX=-1=0.2.,例2.4.1设随机变量X有如下概率分布:,求Y=(X1)2的概率分布。,得Y的概率分布:,149,一般地,若X是离散型随机变量,概率分布为,如果g(x1),g(x2),g(xk),中有一些是相同的,把它们作适当并项即可得到一串互不相同(不妨认为从小到大)的y1,y2,yi,.,把yi所对应的所有xk(即yi=g(xk)的pk相加,记成qi,则q1,q2,qi,就是Y=g(X)的概率分布。,150,例2.4.2在应用上认为:单位时间内,一个地区发生火灾的次数服从泊松分布。设某城市一个月内发生火灾的次数XP(5),试求随机变量Y=|X-5|的概率分布。,解:由于X的所有可能取值为0,1,2,对应的概率分布为,151,及Y=|X-5|可知,Y的所有可能取值为0,1,2,。且对每个i,当0i5时,有k=5+i和k=5-i两个k值与i对应,使|k-5|=i;,当i=0或i6时,只有一个k值与i对应,使|k-5|=i。于是,Y的概率分布为:,152,2.4.2连续型随机变量函数的密度函数,1、一般方法若Xf(x),-0),解:设Y和X的分布函数分别为FY(y)和FX(x),注意到Y=X20,故当y0时,FY(y)=0;,156,从上例中可以看到,在求P(Yy)的过程中,关键的一步是设法从g(X)y中解出X,从而得到与g(X)y等价的X的不等式。例如:用X(y-8)/2代替2X+8y,这样做是为了利用已知的X的分布,求出相应的Y的分布函数FY(y)。,这就是求随机变量函数Y=g(X)的分布函数的一种常用方法。,用代替cX2y。,157,2.公式法:,定理的证明与前面的解题思路类似。,其中x=h(y)是y=g(x)的反函数,,158,例2.4.5已知XN(,2),求,解:,的概率密度,关于x严单,反函数为,故,159,例设XU0,1,求Y=ax+b的概率密度.(a0),解:Y=ax+b关于x严单,反函数为,故,而,故,160,例设随机变量X在(0,1)上服从均匀分布,求Y=-2lnX的概率密度。,解:在区间(0,1)上,函数lnx0,于是y=-2lnx在区间(0,1)上单调下降,有反函数,由前述定理,得,注意取绝对值,161,已知X在(0,1)上服从均匀分布,,代入的表达式中,得,即Y服从参数为1/2的指数分布。,162,本章小结.,163,第三章随机向量,有些随机现象只用一个随机变量来描述是不够的,需要用几个随机变量来同时描述。,3.导弹在空中位置坐标(X,Y,Z)。,1.某人体检数据血压X和心律Y;,例如:,2.钢的基本指标含碳量X,含硫量Y和硬度Z;,164,一般地,将随机试验涉及到的n个随机量X1,X2,Xn放在一起,记成(X1,X2,Xn),称n维随机向量(或变量)。,由于从二维随机向量推广到多维随机向量并无实质性困难,所以,我们着重讨论二维随机向量。,一维随机变量XR1上的随机点坐标二维随机变量(X,Y)R2上的随机点坐标n维随机变量(X1,X2,Xn)Rn上的随机点坐标多维随机变量的研究方法也与一维类似,用分布函数、概率密度、或分布律来描述其统计规律,165,3.1二维随机向量及其分布函数,设试验E的样本空间为,X=X()与Y=Y()是定义在上的两个随机变量,由它们构成的向量(X,Y)称为二维随机向量。二维随机向量(X,Y)的性质不仅与X和Y的性质有关,而且还依赖于X和Y之间的相互关系。因此,必须把(X,Y)作为一个整体来看待,加以研究。为此,首先引入二维随机向量(X,Y)的分布函数的概念。,166,定义3.1.1设(X,Y)是二维随机变量,(x,y)R2,则称F(x,y)=PXx,Yy为(X,Y)的分布函数。,也即:分布函数F()表示随机点(X,Y)落在区域中的概率。如图阴影部分:,几何意义:F(x0,y0)就是点(X,Y)落在平面上,以(x0,y0)为顶点,且位于该点左下方无限矩形区域上的概率。,167,对于(x1,y1),(x2,y2)R2,(x1x2,y1y2),则Px1Xx2,y1yy2F(x2,y2)F(x1,y2)F(x2,y1)F(x1,y1).,(x1,y1),(x2,y2),(x2,y1),(x1,y2),168,(1)单调不减对任意yR,当x1x2时,F(x1,y)F(x2,y);对任意xR,当y1y2时,F(x,y1)F(x,y2).(2)x,yR,有0F(x,y)1;,分布函数F(x,y)具有如下性质:,169,(3)归一性对任意(x,y)R2,170,例已知二维随机变量(X,Y)的分布函数为,1)求常数A,B,C。2)求P0X2,0Y3,解:,171,3.2二维离散型随机向量,定义3.2.1若二维随机变量(X,Y)只能取至多可列个值(xi,yj),(i,j1,2,),则称(X,Y)为二维离散型随机变量。二维离散型随机变量(X,Y)取(xi,yj)的概率为pij,则称PXxi,Yyj,pij,(i,j1,2,)为二维离散型随机向量(X,Y)的分布律。记为(X,Y)PXxi,Yyj,pij,(i,j1,2,),二维离散型随机向量分布函数与概率分布的关系式为,172,分布律的性质(1)pij0,i,j1,2,;(2),二维离散型随机变量的分布律也可列表表示如下:,173,例袋中有两只红球,三只白球,现不放回摸球二次,令,求(X,Y)的分布律。,X,Y,10,10,174,例3.2.1设有10件产品,其中7件正品,3件次品。现从中任取两次,每次取一件,取后不放回。令:X=1:若第一次取到的产品是次品,X=0:若第一次取到的产品是正品,Y=1:若第二次取到的产品是次品,Y=0:若第二次取到的产品是正品。求:二维随机向量(X,Y)的概率分布。,解:(X,Y)所有可能取的值是:(0,0),(0,1),(1,0),(1,1)。,175,PX=0,Y=0=P第一次取正品,第二次取正品,利用古典概型,得:PX=0,Y=0=(76)/(109)=7/15。同理,得PX=0,Y=1=(73)/(109)=7/30,PX=1,Y=0=(37)/(109)=7/30,PX=1,Y=1=(32)/(109)=1/15。,176,例3.2.2为了进行吸烟与肺癌关系的研究,随机调查了23000个40岁以上的人,其结果列在下表之中。,X=1若被调查者不吸烟,X=0若被调查者吸烟,Y=1若被调查者未患肺癌,Y=0若被调查者患肺癌。,177,从表中各种情况出现的次数,计算各种情况出现的频率,就产生了二维随机向量(X,Y)的概率分布:PX=0,Y=03/23000=0.00013,PX=1,Y=01/23000=0.00004,PX=0,Y=14597/23000=0.19987,PX=1,Y=118399/23000=0.79996。,178,3.3二维连续型随机向量,3.3.1概率密度,定义3.3.1设二维随机向量(X,Y)的联合分布函数为F(x,y),如果存在一个非负函数f(x,y),使得对任意实数x,y,有,则称(X,Y)为二维连续型随机向量,f(x,y)为(X,Y)的概率密度函数,简称概率密度。.,变上限的二重广义积分,179,概率密度f(x,y)的性质:(1)非负性:f(x,y)0,(x,y)R2;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司股合同样本样本
- 交强险投保合同样本
- 健身培训合同样本
- 代课合同样本
- 公路交工检测合同标准文本
- 公众号托管合同样本
- 东莞工厂宿舍租赁合同样本
- 供货维修合同样本
- 供购合同样本
- 义乌劳务合同标准文本
- 患者隐私保护培训课件
- 四川凉山州人民政府办公室考调所属事业单位工作人员2人高频重点提升(共500题)附带答案详解
- 分包单位负责人岗位责任制度模版(3篇)
- 2023年高考化学试卷(河北)(解析卷)
- 2025年国家信息中心招聘15人高频重点提升(共500题)附带答案详解
- 基于STM32单片机的人体感应灯设计
- 教学课件英语人教版2024版七年级初一上册Unit 1 You and Me Section A1a1d2
- 学前儿童语言教育与活动指导-期末试卷(二)
- 畜牧业边境管理办法
- 基于单片机的步进电机控制系统的设计【毕业论文】
- 化工行业保安工作计划
评论
0/150
提交评论