




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.3-3.1.4基本定理和坐标表示主备人: 学生姓名: 得分:1、 教学内容:空间向量(第三课时)3.1.3-3.1.4空间向量的基本定理和坐标表示2、 教学目标1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解及其坐标表示.3.掌握空间向量线性运算的坐标运算三、课前预习:1空间的基底惟一吗?2设向量a(x1,y1,z1)与向量b(x2,y2,z2)共线,若x2y2z20,则满足的条件是什么?四、讲解新课1空间向量基本定理(1)定理如果三个向量e1,e2,e3不共面,那么对空间任一向量p,存在惟一的有序实数组x,y,z,使pxe1ye2ze3.(2)基底与基向量如果三个向量e1,e2,e3不共面,那么空间的每一个向量都可由向量e1,e2,e3线性表示我们把e1,e2,e3称为空间的一个 ,e1,e2,e3叫做 空间任何三个不共面的向量都可构成空间的一个基底(3)正交基底与单位正交基底如果空间一个基底的三个基向量是两两互相垂直,那么这个基底叫做正交基底,当一个正交基底的三个基向量都是 时,称这个基底为单位正交基底,通常用i,j,k表示(4)推论设O,A,B,C是不共面的四点,则对空间任意一点P,都存在惟一的有序实数组(x,y,z),使得xyz.2空间向量的坐标表示空间直角坐标系Oxyz中,i,j,k分别为x,y, z轴方向上的单位向量,对于空间任一个向量a,若有axiyjzk,则有序实数组(x,y,z)叫向量a在空间直角坐标系中的坐标特别地,若A(x,y,z),则向量的坐标为(x,y,z)3坐标运算设a(a1,a2,a3),b(b1,b2,b3),则ab(a1b1,a2b2,a3b3);ab(a1b1,a2b2,a3b3);a(a1,a2,a3) (R)ab(a0)b1a1,b2a2,b3a3 (R).4、有关例题要点一空间向量的基底例1若a,b,c是空间的一个基底试判断ab,bc,ca能否作为该空间的一个基底?规律方法空间向量有无数个基底判断给出的某一向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或是一些常见的几何图形帮助我们进行判断跟踪演练1以下四个命题中正确的是_空间的任何一个向量都可用三个给定向量表示;若a,b,c为空间的一个基底,则a,b,c全不是零向量;如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;任何三个不共线的向量都可构成空间的一个基底要点二用基底表示向量例2如图,四棱锥POABC的底面为一矩形,PO平面OABC,设a,b,c,E,F分别是PC和PB的中点,试用a,b,c表示,.规律方法(1)空间中的任一向量均可用一组不共面的向量来表示,只要基底选定,这一向量用基底表达的形式是惟一的;(2)用基底来表示空间中的向量是向量解决数学问题的关键,解题时注意三角形法则或平行四边形法则的应用跟踪演练2如图所示,空间四边形OABC中,G、H分别是ABC、OBC的重心,设a,b,c.试用向量a,b,c表示向量.要点三空间向量的坐标表示例3已知PA垂直于正方形ABCD所在的平面,M、N分别是AB、PC的三等分点且PN2NC,AM2MB,PAAB1,求的坐标规律方法建系时要充分利用图形的线面垂直关系,选择合适的基底,在写向量的坐标时,考虑图形的性质,充分利用向量的线性运算,将向量用基底表示跟踪演练3已知PA垂直于正方形ABCD所在的平面,M、N分别是AB、PC的中点,并且PAAD1,建立适当坐标系,求的坐标要点四空间向量线性运算的坐标运算例4:已知a=(1,-3,8), b=(3,10,-4), 求a+b,a-b, 3a.跟踪演练4:已知空间四点A(-2,3,1), B(2,-5,3), C(10,0,10)和D(8,4,9). 求证:四边形ABCD是梯形。五、课堂练习1有以下命题:单位正交基底中的基向量模为1且互相垂直;O,A,B,C为空间四点,且向量,不构成空间的一个基底,那么点O,A,B,C一定共面;已知向量a,b,c是空间的一个基底,则向量ab,ab,c,也是空间的一个基底其中正确的命题序号是_2已知向量a(1,1,0),b(1,0,2),若kab与2ab平行,则实数k_.3已知A(3,4,5),B(0,2,1),O(0,0,0),若,则C的坐标是_4若a,b,c是空间的一个基底,且存在实数x,y,z使得xaybzc0,则x,y,z满足的条件是_六、课堂小结七、课后作业1在空间直角坐标系Oxyz中,下列说法正确的是_向量与点B的坐标相同; 向量与点A的坐标相同;向量与向量的坐标相同; 向量与向量的坐标相同2正方体ABCDA1B1C1D1中,点E、F分别是底面A1C1和侧面CD1的中心,若0 (R),则_.3.已知空间四边形OABC,其对角线为OB,AC,点M,N分别是对边OA,BC的中点,点G在线段MN上,且MG2GN,用基底向量,表示向量为_4已知a3,6,6, b1,3,2,若ab,则_.5与a(2,1,2)共线且满足az18的向量z_.6若a(a1,a2,a3),b(b1,b2,b3),则是ab的_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公会礼品供货合同样本
- 供货框架协议合同样本
- 三农拍摄合同样本
- 代销化肥合同样本
- 代理录入业绩合同标准文本
- 中交二航局分包合同标准文本
- 临时工用工合同样本
- 会务租用合同样本
- led屏维修合同样本
- 产业发展顾问合同样本
- SL 288-2014 水利工程施工监理规范
- 5WHY分析法培训课件
- (高清版)TDT 1031.6-2011 土地复垦方案编制规程 第6部分:建设项目
- 国企素质测评试题及答案
- 2024春苏教版《亮点给力大试卷》数学六年级下册(全册有答案)
- 中考英语语法填空总复习-教学课件(共22张PPT)
- 综合办公楼装饰装修工程招标文件
- 玻璃体切除手术配合课件
- 手足口病小讲课护理课件
- 2024年浙江杭州地铁运营分公司招聘笔试参考题库含答案解析
- 《质量检验培训》课件
评论
0/150
提交评论