数学必修四知识点总结ppt课件_第1页
数学必修四知识点总结ppt课件_第2页
数学必修四知识点总结ppt课件_第3页
数学必修四知识点总结ppt课件_第4页
数学必修四知识点总结ppt课件_第5页
已阅读5页,还剩178页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,三角函数总复习,.,2,任意角的概念,角的度量方法(角度制与弧度制),弧长公式与扇形面积公式,任意角的三角函数,同角公式,诱导公式,两角和与差的三角函数,二倍角的三角函数,三角函数式的恒等变形(化简、求值、证明),三角函数的图形和性质,正弦型函数的图象,已知三角函数值,求角,知识网络结构,.,3,1.角的概念的推广(1)正角,负角和零角.用旋转的观点定义角,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.,(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角终边相同的角(包含角在内)的集合为.,(4)角在“到”范围内,指.,(2)象限角和轴线角.象限角的前提是角的顶点与直角坐标系中的坐标原点重合,始边与轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角,若角的终边与坐标轴重合,这个角不属于任一象限,这时也称该角为轴线角.,一、基本概念:,.,4,一、任意角的三角函数,1、角的概念的推广,正角,负角,o,x,y,的终边,的终边,零角,.,5,二、象限角:,注:如果角的终边在坐标轴上,则该角不是象限角。,三、所有与角终边相同的角,连同角在内,构成集合:,(角度制),(弧度制),例1、求在到()范围内,与下列各角终边相同的角,原点,x轴的非负半轴,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。,.,6,1、终边相同的角与相等角的区别,终边相同的角不一定相等,相等的角终边一定相同。,2、象限角、象间角与区间角的区别,3、角的终边落在“射线上”、“直线上”及“互相垂直的两条直线上”的一般表示式,三、终边相同的角,.,7,(1)与角终边相同的角的集合:,1.几类特殊角的表示方法,|=2k+,kZ.,(2)象限角、象限界角(轴线角),象限角,第一象限角:,第二象限角:,第三象限角:,第四象限角:,一、角的基本概念,.,8,轴线角,x轴的非负半轴:=k360(2k)(kZ);,x轴的非正半轴:=k360+180(2k+)(kZ);,x轴:=k180(k)(kZ);,.,9,.,10,典型例题,各个象限的半角范围可以用下图记忆,图中的、分别指第一、二、三、四象限角的半角范围;,例1.若是第三象限的角,问/2是哪个象限的角?2是哪个象限的角?,.,11,高考试题精选及分析,C,点评:本题先由所在象限确定/2所在象限,再/2的余弦符号确定结论.,.,12,例1求经过1小时20分钟时钟的分针所转过的角度:,解:分针所转过的角度,评析:在解选择题或填空题时,如求角所在象限,也可以不讨论k的几种情况,如图所示利用图形来判断.,.,13,四、什么是1弧度的角?,长度等于半径长的弧所对的圆心角。,.,14,(3)角度与弧度的换算.只要记住,就可以方便地进行换算.应熟记一些特殊角的度数和弧度数.在书写时注意不要同时混用角度制和弧度制,(4)弧长公式和扇形面积公式.,.,15,度弧度0,2、角度与弧度的互化,特殊角的角度数与弧度数的对应表,.,16,略解:,例3已知角和满足求角的范围.,解:,例4、已知扇形的周长为定值100,问扇形的半径和圆心角分别为多少时扇形面积最大?最大值是多少?,扇形面积最大值为625.,.,17,例7.已知一扇形中心角是,所在圆的半径是R.若60,R10cm,求扇形的弧长及该弧所在的弓形面积.若扇形的周长是一定值C(C0),当为多少弧度时,该扇形的面积有最大值?并求出这一最大值?,指导:扇形的弧长和面积计算公式都有角度制和弧度制两种给出的方式,但其中用弧度制给出的形式不仅易记,而且好用.在使用时,先要将问题中涉及到的角度换算为弧度.,.,18,解:(1)设弧长为l,弓形面积为S弓。,.,19,正弦线:,余弦线:,正切线:,(2)当角的终边在x轴上时,正弦线,正切线变成一个点;当角的终边在y轴上时,余弦线变成一个点,正切线不存在。,2.正弦线、余弦线、正切线,有向线段MP,有向线段OM,有向线段AT,注意:(1)圆心在原点,半径为单位长的圆叫单位圆.在平面直角坐标系中引进正弦线、余弦线和正切线,.,20,三角函数,三角函数线,正弦函数余弦函数正切函数,正弦线MP,正弦、余弦函数的图象,P,M,A(1,0),T,sin=MP,cos=OM,tan=AT,注意:三角函数线是有向线段!,余弦线OM,正切线AT,.,21,P,O,M,P,O,M,P,O,M,P,O,M,MP为角的正弦线,OM为角的余弦线,.,22,10)函数y=lgsinx+的定义域是(A)(A)x|2kx2k+(kZ)(B)x|2kx2k+(kZ)(C)x|2kx2k+(kZ)(D)x|2kx2k+(kZ),.,23,专题知识,三角函数线的应用,一、三角式的证明,2、已知:角为锐角,试证:,1、已知:角为锐角,试证:(1),.,24,4、在半径为r的圆中,扇形的周长等于半圆的弧长,那么扇形圆心角是多少?扇形的的面积是多少?,答:圆心角为-2,面积是,5、用单位圆证明siantan.(000)的图象的对称中心和对称轴方程,.,73,2、函数的图象(A0,0),第一种变换:,图象向左()或向右()平移个单位,横坐标伸长()或缩短()到原来的倍纵坐标不变,纵坐标伸长(A1)或缩短(0A1)或缩短(0A1)到原来的A倍横坐标不变,.,74,5、对于较复杂的解析式,先将其化为此形式:并会求相应的定义域、值域、周期、单调区间、对称中心、对称轴;会判断奇偶性,.,75,例3、不通过求值,比较tan1350与tan1380的大小。,解:900135013800)的图象求其解析式的一般方法:,.,85,6、已知下图是函数的图象(1)求的值;(2)求函数图象的对称轴方程.,(2)函数图象的对称轴方程为,即,.,86,.,87,设函数,(1)求;,(2)求函数的单调递增区间;(3)画出函数在区间0,上的图象.,图象的一条对称轴是直线,例3,.,88,解析:,(1),.,89,(2),函数的单调递增区间为,.,90,x0,(3),.,91,5)函数(A0,0)的一个周期内的图象如图,则有(),(A),(B),(C),(D),.,92,如图:根据函数y=Asin(x+)(A0,0)图象求它的解析式,.,93,y,x,0,-4,4,如图:根据函数y=Asin(x+)(A0,0)图象求它的解析式,.,94,如图:根据函数y=Asin(x+)(A0,0)图象求它的解析式,.,95,如图:根据函数y=2sin(x+)(0)图象求它的解析式,.,96,如图:根据函数y=2sin(x+)(0)图象求它的解析式,.,97,4.11已知三角函数值求角,的意义:,.,98,4.11已知三角函数值求角,.,99,4.11已知三角函数值求角,的意义:,.,100,4、已知三角函数值求角,y=sinx,的反函数y=arcsinx,y=cosx,的反函数y=arccosx,y=tanx,的反函数y=arctanx,已知角x()的三角函数值求x的步骤,先确定x是第几象限角若x的三角函数值为正的,求出对应的锐角;若x的三角函数值为负的,求出与其绝对值对应的锐角根据x是第几象限角,求出x若x为第二象限角,即得x=;若x为第三象限角,即得x=;若x为第四象限角,即得x=若,则在上面的基础上加上相应函数的周期的整数倍。,反三角函数,.,101,已知三角函数值求角,已知三角函数值求角x(仅限于0,2)的解题步骤:,1、如果函数值为正数,则求出对应的锐角x0;如果函数值为负数,则求出与其绝对值相对应的锐角x0;,2、由函数值的符号决定角x可能的象限角;,3、根据角x的可能的象限角得出0,2内对应的角:,如果x是第二象限角,那么可以表示为x0,如果x是第三象限角,那么可以表示为x0,如果x是第四象限角,那么可以表示为2x0,.,102,说明:三角函数值求角,关键在于角所属范围,这点不容忽视.,(1)判断角的象限;(2)求对应锐角;如果函数值为正数,则先求出对应的锐角x1;如果函数值为负数,则先求出与其绝对值对应的锐角x1.(3)求出(0,2)内对应的角;如果它是第二象限角,那么可表示为x1;如果它是第三或第四象限角,则可表示为x1或x12.(4)求出一般解利用终边相同的角有相同的三角函数值这一规律写出结果.,(三)已知三角函数值求角”的基本步骤,1、基本步骤,.,103,2、表示角的一种方法反三角函数法,1、反正弦:,这时sin(arcsina)=a,2、反余弦:,这时cos(arccosa)=a,这时tan(arctana)=a,3、反正切:,.,104,三、两角和与差的三角函数,1、预备知识:两点间距离公式,x,y,o,2、两角和与差的三角函数,注:公式的逆用及变形的应用,公式变形,.,105,3、倍角公式,.,106,二、知识点,(一)两角和与差公式,(二)倍角公式,公式,=1-cos22cos2=1+cos21+cos2=2cos21-cos2=2sin2,tan+tan=tan(+)(1-tantan)tan-tan=tan(-)(1+tantan),注意1、公式的变形如:,注意2、公式成立的条件(使等式两边都有意义).,C:,S:,C2:,S2:,T2:,T:,.,107,3、倍角公式,注:正弦与余弦的倍角公式的逆用实质上就是降幂的过程。特别,返回,和角公式的一个重要变形,.,108,其它公式(1),1、半角公式,2、万能公式,.,109,十二、两角和与差的正弦、余弦、正切:,注意:、的变形式以及运用和差公式时要会拼角,如:,要熟悉公式逆用!,.,110,十三、一个化同角同函数名的常用方法:,如:,例7、求的值,十四、二倍角公式:,.,111,.,112,例4化简:,解法1:从“角”入手,“复角”化为“单角”,利用“升幂公式”。,.,113,例4化简:,解法2:从“幂”入手,利用“降幂公式”。,.,114,例4化简:,解法3:从“名”入手,“异名化同名”。,.,115,例4化简:,解法4:从“形”入手,利用“配方法”。,.,116,三角解题常规,宏观思路,分析差异,寻找联系,促进转化,指角的、函数的、运算的差异,利用有关公式,建立差异间关系,活用公式,差异转化,矛盾统一,.,117,微观直觉,1、以变角为主线,注意配凑和转化;2、见切割,想化弦;个别情况弦化切;3、见和差,想化积;见乘积,化和差;4、见分式,想通分,使分母最简;5、见平方想降幂,见“1cos”想升幂;6、见sin2,想拆成2sincos;7、见sincos或,9、见coscoscos,先运用,sin+sin=pcos+cos=q,8、见asin+bcos,想化为的形式,若不行,则化和差,10、见cos+cos(+)+cos(+2),想乘,想两边平方或和差化积,.,118,总结:多种名称想切化弦;遇高次就降次消元;asinA+bcosA提系数转换;多角凑和差倍半可算;难的问题隐含要显现;任意变元可试特值算;求值问题缩角是关键;字母问题讨论想优先;非特殊角问题想特角算;周期问题化三个一再算;适时联想联想是关键!,.,119,【解题回顾】找出非特殊角和特殊角之间的关系,这种技巧在化简求值中经常用到,并且三角式变形有规律即坚持“四化”:,多角同角化异名同名化切割弦化特值特角互化,.,120,公式体系的推导:,首先利用两点间的距离公式推导,,然后利用换元及等价转化等思想方法,以为中心推导公式体系。,.,121,sin+cos=1,.,122,二【述评】1、变为主线,抓好训练。变是本章的主题,在三角变换考查中,角的变换(恒等)、三角函数名的变换(诱导公式)、三角函数次数的变换(升、降幂公式)、三角函数表达式的变换(综合)等比比皆是。在训练中,强化变化意识是关键。但题目不可以太难。较特殊技巧的题目不做。立足课本,掌握课本中常见问题的解法,把课本中的习题进行归类,并进行分析比较,寻找解题规律。2、基本解题规律:观察差异(角或函数或运算)寻找联系(借助于熟知的公式、方法或技巧)分析综合(由因导果或执果索因)实现转化。,.,123,1、值域与最值问题,利用有界性,化二次函数型,运用合一变换,换元,.,124,十七、求值域问题:,主要是将式子化成同角度同函数名的形式,再利用正弦函数与余弦函数的有界性求解。,例10、求函数的值域,有时还要运用到的关系,.,125,2、对称性问题,3、奇偶性与周期性问题,注意绝对值的影响,化为单一三角函数,.,126,4、单调性与单调区间,复后函数单调性,注意负号的处理,.,127,5、图像变换问题,相位变换、周期变换、振幅变换,求函数解析式,.,128,例4:已知函数求:函数的最小正周期;函数的单增区间;,解:,应用:化同一个角同一个函数,.,129,例4:已知函数求:函数的最大值及相应的x的值;函数的图象可以由函数的图象经过怎样的变换得到。,解:,图象向左平移个单位,图象向上平移2个单位,应用:化同一个角同一个函数,.,130,例5:已知,解:,应用:化简求值,.,131,例1,化简:,解:,原式=,.,132,.,133,.,134,练习题,.,135,(1)证明:,化简得:,.,136,解:,.,137,解:,应用:化简求值,.,138,.,139,2、解:,由2+2得:,即,所以,由22得:,.,140,.,141,.,142,解:,.,143,.,144,例15.(06陕西理17)已知函数f(x)sin(2x)2sin2(x)(xR)(1)求函数f(x)的最小正周期;(2)求使函数f(x)取最大值的x的集合,.,145,解:f(x)sin(2x)1cos2(x)sin(2x)cos(2x)12sin(2x)1函数f(x)的最小正周期T.使函数f(x)取最大值的x的集合为x|x=k,kZ,.,146,5、已知f(x)=2sin(x+)cos(x+)+2cos2(x+)-。(1)化简f(x)的解析式;(2)若0,求,使函数f(x)为偶函数。(3)在(2)成立的条件下,求满足f(x)=1,x-,的x的集合。解:(1)f(x)=sin(2x+)+2cos2(x+)-1=sin(2x+)+cos(2x+)=2cos(2x+-)(2)当=时f(x)为偶函数。(3)2cos2x=1cos2x=x=或x=,.,147,2、已知函数f(x)=sin(x+)+sin(x-)+cosx+a(aR,a常数)。(1)求函数f(x)的最小正周期;(2)若x-,时,f(x)的最大值为1,求a的值。,解:(1)f(x)=sin(x+)+sin(x-)+cosx+a=sinx+cosx+a=2sin(x+)+af(x)最小正周期T=2,(2)x-,x+-,f(x)大=2+aa=-1,.,148,例3、求函数的值域.,解:,又-1sinx1,原函数的值域为:,变题:已知函数(a为常数,且a0),求该函数的最小值.,当-20时,,当-2时,,.,149,3、函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(aR):(1)求g(a);(2)若g(a)=,求a及此时f(x)的最大值。,解:(1)f(x)=2(cosx-)2-2-2a-1,-1cosx1当-11即-2a2时f(x)小=-2-a-1,当1即a2时f(x)小=f(1)=1-4a,当1即a2时f(x)小=f(1)=1-4a,当-1即a-2时f(x)小=f(-1)=1,.,153,(2)a=-1此时f(x)=2(cosx+)2+f(x)大=5,3、函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a)(aR):(1)求g(a);(2)若g(a)=,求a及此时f(x)的最大值。,.,154,5、已知f(x)=2sin(x+)cos(x+)+2cos2(x+)-。(1)化简f(x)的解析式;(2)若0,求,使函数f(x)为偶函数。(3)在(2)成立的条件下,求满足f(x)=1,x-,的x的集合。解:(1)f(x)=sin(2x+)+2cos2(x+)-1=sin(2x+)+cos(2x+)=2cos(2x+-)(2)当=时f(x)为偶函数。(3)2cos2x=1cos2x=x=或x=,.,155,例12.(2006年天津文9)已知函数f(x)asinxbcosx(a,b为常数,a0,xR)在x处取得最小值,则函数yf(x)的对称中心坐标是_,.,156,解:由(ab)化简得ab所以f(x)asin(x),a0从而f(x)asinx,其对称中心坐标为(k,0),kZ.,.,157,平面向量复习,向量的三种表示,表示,运算,向量加法与减法,向量的相关概念,实数与向量的积,三角形法则,平行四边形法则,向量平行、垂直的条件,平面向量的基本定理,平面向量,向量的数量积,向量的应用,.,158,几何表示,:有向线段,向量的表示,字母表示,坐标表示,:(x,y),若A(x1,y1),B(x2,y2),则AB=,(x2x1,y2y1),返回,.,159,1.向量的概念:2.向量的表示:3.零向量:4.单位向量:5.平行向量:6.相等向量:7.共线向量:,既有大小又有方向的量,1.有向线段2.字母3.有向线段起点和终点字母,长度为零的向量(零向量与任意向量都平行,长度为1个单位的向量,1.方向相同或相反的非零向量2.零向量与任一向量平行,长度相等且方向相同的向量,平行向量就是共线向量,.,160,向量的模(长度),1.设a=(x,y),则,2.若表示向量a的起点和终点的坐标分别为A(x1,y1)、B(x2,y2),则,返回,.,161,.,162,例1:思考下列问题:,1、下列命题正确的是(1)共线向量都相等(2)单位向量都相等(3)平行向量不一定是共线向量(4)零向量与任一向量平行,四、例题,.,163,一、第一层次知识回顾:,1.向量的加法运算,三角形法则,平行四边形法则,“首尾相接首尾连”,.,164,2.向量的减法运算,设则,思考:若非零向量,,则它们的模相等且方向相同。,同样若:,“同始点尾尾相接,指向被减向量”,一、第一层次知识回顾:,.,165,1.向量的加法运算,A,B,C,AB+BC=,三角形法则,O,A,B,C,OA+OB=,平行四边形法则,坐标运算:,则a+b=,重要结论:AB+BC+CA=,0,设a=(x1,y1),b=(x2,y2),(x1+x2,y1+y2),AC,OC,.,166,例题:,.,167,实数与向量a的积,定义:,坐标运算:,其实质就是向量的伸长或缩短!,a是一个,向量.,它的长度|a|=,|a|;,它的方向,(1)当0时,a的方向,与a方向相同;,(2)当0时,a的方向,与a方向相反.,若a=(x,y),则a=,(x,y),=(x,y),返回,.,168,平面向量的数量积(1)a与b的夹角:,(2)向量夹角的范围:,(3)向量垂直:,00,1800,共同的起点,.,169,(4)两个非零向量的数量积:,规定:零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论