空间向量立体几何(夹角)_第1页
空间向量立体几何(夹角)_第2页
空间向量立体几何(夹角)_第3页
空间向量立体几何(夹角)_第4页
空间向量立体几何(夹角)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

异面直线所成角的范围:,思考:,结论:,线线角,复习,线面角,二面角,小结,引入,题型二:线面角,直线与平面所成角的范围:,思考:,结论:,线线角,复习,线面角,二面角,小结,引入,二面角的范围:,关键:观察二面角的范围,线线角,复习,线面角,二面角,小结,引入,例2如图在正方体ABCD-A1B1C1D1中,M是AB的中点,则对角线DB1与CM所成角的余弦值为_.,z,y,B1,C1,D1,A1,C,D,解:以A为原点建立如图所示的直角坐标系A-xyz,设正方体的棱长为2,那么M(1,0,0),C(2,2,0),B1(2,0,2),D(0,2,0),cos=|cos|,设DB1与CM所成角为,与所成角为,于是:,例3正三棱柱ABC-A1B1C1的底面边长为a,高为,求AC1与侧面ABB1A1所成的角。,解:建立如图示的直角坐标系,则A(,0,0),B(0,0)A1(,0,).C(-,0,)设面ABB1A1的法向量为n=(x,y,z)得由,解得,取y=,得n=(3,0),设与n夹角为而故:AC1与侧面ABB1A1所成的角大小为30.,例4在四棱锥S-ABCD中DAB=ABC=90,侧棱SA底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大小.,解:建立如图所示的空间直角坐标系O-xyz,则B(1,0,0),C(1,1,0),D(0,2,0),S(0,0,1).设平面SCD的法向量n1=(x,y,z),则由得n1=(1,1,2).而面SAD的法向量n2=(1,0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论