已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.4平面向量共线的坐标表示,1,1.理解用坐标表示的平面向量共线的条件.2.能用向量的坐标表示判定两个向量共线,会用向量的坐标表示证明三点共线.,2,平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b0,当且仅当x1y2-x2y1=0时,ab.【做一做】下列各组向量共线的是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)答案:D,3,4,5,6,题型一,题型二,题型三,题型四,【例1】已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行?平行时它们是同向还是反向?分析:先由向量a,b求得向量ka+b与a-3b,再根据向量平行的条件列方程组求得k的值,最后判断两个向量的方向.,7,题型一,题型二,题型三,题型四,反思已知两个向量共线,求参数的问题,通常先求出每一个向量的坐标,再根据两向量共线的坐标表示,列出方程求解参数.,8,题型一,题型二,题型三,题型四,【变式训练1】已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)b,则k=.解析:a-c=(3,1)-(k,7)=(3-k,-6).(a-c)b,3(3-k)+6=0,k=5.答案:5,9,题型一,题型二,题型三,题型四,10,题型一,题型二,题型三,题型四,反思证明三点共线的常见方法有:(1)证得两条较短的线段长度之和等于第三条线段的长度;(2)利用斜率;(3)利用直线方程即由其中两点求出直线方程,再验证第三点在这条直线上;(4)利用向量共线的条件,如本题.其中方法(4)是最优解法.,11,题型一,题型二,题型三,题型四,【变式训练2】(1)若A(-1,-2),B(4,8),C(5,x),且A,B,C三点共线,则x=.(2)已知A(-1,-1),B(1,3),C(2,5),求证:A,B,C三点共线.,12,题型一,题型二,题型三,题型四,13,题型一,题型二,题型三,题型四,【例3】如图,已知点A(4,0),B(4,4),C(2,6),O(0,0),求AC与OB的交点P的坐标.分析:先设出点P的坐标,再利用向量共线的条件求解.,14,题型一,题型二,题型三,题型四,15,题型一,题型二,题型三,题型四,反思在求点或向量的坐标时,要充分利用两个向量共线的条件,要注意方程思想的应用,建立方程的条件有向量共线、向量相等等.,16,题型一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 踩高跷幼儿园教案
- 保护牙齿教案反思小班
- 汉真有趣说课稿
- 航空航天履约管理办法
- 塑料大棚建设安装协议
- 临时医疗电源租赁合同
- 电信业不合格服务管理
- 航空航天设施保温施工协议
- 脊椎病诊断与治疗
- 研发项目保密规则
- 工程项目审核现场踏勘记录表
- DL∕T 698.45-2017 电能信息采集与管理系统 第4-5部分:通信协议-面向对象的数据交换协议
- 2021年11月广州市增城区(卫生类)招聘考试《护理学》试卷
- 登革热诊疗方案(卫健委2024年版)
- 上海版小学英语单词表
- 2024中国海油应届毕业生招聘笔试历年典型考题及考点剖析附带答案详解
- 2024版借用公司名义签订合同协议
- 【超星尔雅学习通】伦理学概论(北京师范大学)网课章节答案
- 2024年国家知识产权局商标审查协作中心招聘60人【重点基础提升】模拟试题(共500题)附带答案详解
- 失智失能老年人的饮食照护(失智失能老人健康照护课件)
- 2025年中考数学专题09 逆等线最值专题(原卷版)
评论
0/150
提交评论