注重培养“四基”提高数学素养修改20120915-复制.ppt_第1页
注重培养“四基”提高数学素养修改20120915-复制.ppt_第2页
注重培养“四基”提高数学素养修改20120915-复制.ppt_第3页
注重培养“四基”提高数学素养修改20120915-复制.ppt_第4页
注重培养“四基”提高数学素养修改20120915-复制.ppt_第5页
已阅读5页,还剩145页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

注重培养“四基”提高数学素养-义务教育数学课程标准(2011版)研读,渭南市教科所郭崇智,一、为什么要修订课程标准?二、本次课标修订最关注的是什么?三、数学课标有哪些新变化?如何深化课堂教学改革,实施素质教育?,一、为什么要修订课程标准?,基础教育课程改革已走过了10多年的历程2001年,教育部启动了基础教育课程改革,颁布了义务教育21个学科的课程标准(实验稿)。在实验的基础上,2005年,教育部开始着手数学课程标准的修订工作。,1.修订课程标准是深化基础教育课程改革的重要任务,10多年来,课程改革取得了实质性进展,各学科课程标准在实验过程中接受了实践的检验,取得了丰硕的成果,积累了宝贵的经验。另一方面,这次改革中也存在着需要进一步改进和完善之处。需要通过修改课标不断深化基础教育课程改革,2.通过修订课标,使教育更好地适应时代发展要求,十年来中国社会的巨大变化和科学技术的快速发展,也要求教育理念和课程内容与时俱进,不断更新。特别是建立创新型国家目标的提出对深入推进素质教育、培养创新人才提出新要求。修订和完善课标是巩固和发展改革成果,促进教育更好适应时代发展的必然要求。,3.修订义教课标也是落实教育规划纲要的重要举措,教育规划纲要对基础教育课程教材建设提出了明确要求:“坚持德育为先”、“坚持能力为重”、“坚持全面发展”、“调整教材内容、科学设计课程难度”、“深入研究、确定不同教育阶段学生必须掌握的核心内容”等一系列任务要求。需要通过修订课标落实这些要求。,4.通过修订课标更好地发挥其对课堂教学的指导作用,数学课程改革的基础性工作是研制数学课程标准,这也是建国以来的第一次。,课程标准与课堂教学的关系,课程标准作为课程的顶层设计,它与一线的课堂教学有什么样的关系呢?,ChongqingNormalUniversity,课程标准的价值取向、基本理念、目标要求及内容标准应该对教师的教学产生重要影响,并成为教师课堂教学的基本依据。,搞好课堂教学应该深入学习、研究数学课程标准,二、这次课标修订最关注的是什么?,此次课标修订特别关注三个方面要求:时代发展的要求数学学科的要求课堂教学的要求,注意体现时代发展对数学课程的如下要求:,课程改革的核心是人才培养模式变化要加强对学生创新精神和实践能力的培养要以课程为载体实实在在推进素质教育要体现教育的均衡、公平,要为所有学生提供良好的教育要体现义务教育课程的基本特性:普及性、基础性、发展性,进一步反思:,数学教育的价值究竟是什么?今日之数学课程究竟应该教给孩子们什么样的数学?数学课程目标、内容设计如何更加合理?,应注意处理好几个基本关系:,注意用科学、辩证的态度处理好数学课程内容及教学中的一些基本关系。如:重视过程与关注结果教师讲授与学生自主面向全体与因材施教生活化情境化与知识系统性此外,还有直观形象与抽象思维、合情推理与演绎推理等的关系。,内容的主线、课程的聚焦点,如何清晰地体现数学课程的核心?抓住课程内容的主线?从6个关键词到10个核心概念,关注课堂实施的数学课程,课改以来数学课堂发生了那些变化?那些该改变?那些该继承?那些该倡导?什么是数学课堂最应关注的事?,三、数学课程标准有哪些新变化?如何进一步推进课堂教学改革,实施素质教育?,从数学课标修订看新变化:,1.关于基本理念2.关于设计思路3.关于课程目标4.关于课程内容5.关于课程实施,1.关于基本理念的修改(在前言中增加了课程性质的描述、修改、丰富了基本理念的一些提法),前言增加了对数学课程性质的表述,数学课程的性质表述为,“义务教育阶段的数学课程是培养公民素质的基础课程,具有基础性、普及性和发展性。义务教育阶段的数学课程能为学生未来生活、工作和学习奠定重要的基础。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面得到发展。”,义务教育阶段数学课程本质属性,事实上,义务教育阶段数学课程这些本应被“突出体现”的属性有被弱化(或“异化”)的倾向。在相当大范围,义务教育阶段的数学课程从一开始就被导入应试升学的轨道,“突出体现”的就是竞争性、区分性和筛选性。标准对义务教育阶段数学课程本质属性的强调颇有“正本清源”之意。,基本理念反映出我们对数学、数学课程、数学教学以及评价等方面应具有的基本认识和观念、态度,它是制定和实施数学课程的指导思想。教师作为课程的实施者,应自觉树立起正确的数学观、数学课程观、数学教学观、评价观等数学教育观念,并用以指导自己的教学实践活动。,什么是课程的基本理念?,关于基本理念的修改,原课标:数学课程数学数学学习数学教学评价信息技术修改后:数学课程课程内容教学活动学习评价信息技术,关于数学观如何认识数学,原课标:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程新课标:数学是研究数量关系和空间形式的科学,新课标:揭示了作为一门科学的数学所表现出的文化特征及应有价值,数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养要发挥数学在培养人的(理性)思维能力和创新能力方面的不可替代的作用,体现数学课程核心理念的三句话:,人人学有价值的数学人人都能获得必需的数学不同的人在数学上得到不同的发展,人人都能获得良好的数学教育不同的人在数学上得到不同的发展,树立正确的课程观,关于“人人都能获得良好的数学教育”,与过去的提法相比:出发点不变(人人、不同的人);有更深的意义和更广的内涵;落脚点是数学教育而不是数学内容;体现了更强的时代精神和要求(公平的、优质的、均衡的、和谐的、可持续发展的教育)。,何谓“良好的数学教育”?,良好的数学教育对于学生来说是适宜的、满足发展需求的教育良好的数学教育是全面实现育人目标的教育良好的数学教育是促进公平、注重质量的教育良好的数学教育是使学生能可持续发展的教育,良好的数学教育需要在各个维度上体现,提出“良好的数学教育”需要我们重新审视数学课程的目标、内容,也需要我们在课堂教学实施中寻找切入点!,“不同的人在数学上得到不同的发展”,体现了数学教育中对人的主体性地位的回归与尊重需要正视学生的差异,尊重学生的个性,促成发展的多样性“不同的人在数学上得到不同的发展”本质上应促进学生更好地自主发展,课程内容要处理好三个关系:,课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。,课程内容观,我们需要什么样的数学教学?,教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学活动的本质是什么?,树立正确的数学教学观,原课标:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”,修订后:学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。,原课标:教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。,原课标:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平。更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。”,应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。,树立正确的评价观,如何看待信息技术的运用?,数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,2.关于设计思路的修改,学段划分保持不变对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词对四个学习领域的名称作适当调整对课程内容中的若干核心概念作适当调整,对其意义作更明确的阐释,核心概念,对课程目标的行为动词及水平作了描述:标准使用“了解、理解、掌握、运用”等术语表述学习活动结果目标的不同水平,使用“经历、体验、探索”等术语表述学习活动过程目标的不同程度。这些词的基本含义如下。了解:从具体事例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。理解:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。,掌握:在理解的基础上,把对象用于新的情境。运用:综合使用已掌握的对象,选择或创造适当的方法解决问题。经历:在特定的数学活动中,获得一些感性认识。体验:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验。探索:独立或与他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。,在标准中,使用了一些词,表述与上述动词同等水平的要求程度:(1)了解,同类词:知道,初步认识;(2)理解,同类词:认识,会;(3)掌握,同类词:能。(4)运用,同类词:证明。(5)经历,同类词:感受、尝试。(6)体验,同类词:体会。,对四个学习领域名称的修改:总称呼改为课程内容的四个部分,原课标:数与代数空间与图形统计与概率实践与综合应用修改后:数与代数图形与几何统计与概率综合与实践,关于10个核心概念的分析原课标也称为“关键词”,原课标:数感符号感空间观念(6个)统计观念应用意识推理能力修改后:数感符号意识运算能力(10个)模型思想空间观念几何直观推理能力数据分析观念应用意识创新意识,核心概念之一:数感,关于数感(NumberSense),在原标准中未作内涵解释,只从外延上指出它所包括的内容。经过这么多年的课改实践,研究者对数感在理论上有了一些探讨,第一线教师在课堂教学实践中也对培养学生的数感做了许多有益的尝试。此次修订,认真听取了各方意见,吸纳了前期实验研究的一些成果,重新对数感的内涵及功能作了表述。,修订后标准关于数感的提法,标准的提法是:“数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”,将数感表述为“感悟”,原来,对数感内涵的认识较多强调其直觉、感知、潜意识、经验等方面,在教学中常常感到“虚”,找不到教学支点。将数感表述为“感悟”不仅使这一概念有了较为明晰的界定,也使得这一概念有了更实在的意义,有利于一线教师的理解和把握。它揭示了这一概念的两重属性:既有“感”,如感知,又有“悟”,如悟性、领悟。感悟是既通过肢体又通过大脑,因此,既有感知的成分又有思维的成分,标准将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果估计,这主要是基于义务教育阶段数学课程内容的范围并根据学生的实际所作出的要求,这有利于教师在教学中更好地把握数感培养的几条主线。,应结合每一学段的具体教学内容,逐步提升和发展学生的数感。,在第三学段,随着对数的认识领域的扩大以及数的认识经验的积累,可以引导学生在较复杂的数量关系和运算问题中提升数感,发展更为良好的数感品质。,紧密结合现实生活情境和实例,培养学生的数感,现实生活情境和实例,与学生的实际生活经验密切相连,不仅能够为学生提供真实自然的数的感悟环境,也能让学生在数的认知上经历由具体到抽象的过程,逐步发展学生关于数的思维。反之,学生数感的提升也使得他们能用数字的眼光看周围世界,正如标准所说:“建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。”,让学生多经历有关数的活动过程,逐步积累数感经验,在具体的数学活动中,学生能动脑、动手、动口,多种感官协调活动,加之能相互交流,这对强化感知和思维,积累数感经验非常有益比如有关数学的社会调查活动、及一些综合实践活动,核心概念之二:符号意识,(1)何为符号意识?所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统符号意识(Symbolsense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。,符号感(SymbolSense)为何改为符号意识?,英文单词一样,但改动后中文意义有所不同符号感主要的不是潜意识、直觉符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动,这是一个“意识”问题,而不是“感”的问题,(2)符号意识的含义,标准对符号意识的表述有这样几层意思值得我们体会:其一,能够理解并且运用符号表示数、数量关系和变化规律。即对数学符号不仅要“懂”,还要会“用”,符号“操作”,其二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识。这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等,符号表达与符号思考,其三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。这又引出了两个除符号理解和操作之外的要求,即符号的表达与思考。概括起来,符号意识的要求就具体体现于符号理解、符号操作、符号表达、符号思考四个维度。,核心概念之三:空间观念(1)空间观念的含义,空间观念是指对物体及其几何图形的形状、大小、位置关系及其变化建立起来的一种感知和认识,空间想象是建立空间观念的重要途径空间观念也是创新精神所需的基本要素,没有空间观念和空间想象力,几乎很难谈发明与创造,(2)标准中空间观念所提出的要求,标准从四个方面提出了要求:根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。,核心概念之四:几何直观此次新增的核心概念,(1)对几何直观的认识顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;一是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来几何直观就是依托、利用图形进行数学的思考、想象。它在本质上是一种通过图形所展开的想象能力。,(2)标准中几何直观的含义,标准指出:“几何直观是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。”,它表明:今后数学课程中有两件事需要刻意去做,即针对较抽象的数学对象的“图形表示”和“图形分析”。,前者指教学中要培养学生通过画图来表达数学问题的习惯,能画图时尽量画;后者指引导学生借助图形将相对抽象的、复杂的数学关系直观、清晰地展示出来,通过对图形的分析思考进而寻求解决问题的思路。,(3)几何直观的培养使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、证明等数学的过程变得直观,重视变换让图形动起来,几何变换或图形的运动既是学习的对象,也是认识数学的思想和方法。在数学中,我们接触的最基本的图形都是对称图形,例如圆、正多边形、长方体、长方形、菱形、平行四边形等;另一方面,在学习非对称图形时,又往往是运用这些对称图形为工具的。变换又可以看作运动,让图形动起来是指再认识这些图形时,在头脑中让图形运动起来,例如,平行四边形是一个中心对称图形,可以把它看作一个刚体,通过围绕中心(两条对角线的交点)旋转180度,去认识、理解、记忆平行四边形的其他性质。充分地利用变换去认识、理解几何图形是建立几何直观的好办法。,学会从“数”与“形”两个角度认识数学,数形结合首先是对知识、技能的贯通式认识和理解。以后逐渐发展成一种对数与形之间的化归与转化的意识,这种对数学的认识和运用的能力,应该是形成正确的数学态度所必需要求的。,数缺形时少直观,形少数时难入微。数形结合百般好,隔离分家万事休。,华罗庚,核心概念之五:数据分析观念由统计观念改为数据分析观念,原课标中的“统计观念”,强调的是从统计的角度思考问题,认识统计对决策的作用,能对数据处理的结果进行合理的质疑等要求。此次将其改为“数据分析观念”,就是希望改变过去这一概念含义较“泛”,体现统计与概率的本质意义不够鲜明的弱点,而将该部分内容聚焦于“数据分析”。,(1)数据分析观念的含义数据分析观念是学生在有关数据的活动过程中建立起来的对数据的某种“领悟”、由数据去作出推测的意识、以及对于其独特的思维方法和应用价值的体会和认识。,一是过程性(或活动性)要求:让学生经历调查研究,收集、处理数据的过程,通过数据分析作出判断,并体会数据中蕴涵着信息。二是方法性要求:了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的数据分析方法。三是体验性要求:通过数据分析体验随机性。,(2)数据分析观念的要求:,核心概念之六:运算能力此次增加的核心概念,运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力,学习和掌握关于各种运算的知识及技能,并发展运算能力。,(1)标准对运算能力的要求,标准指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。,(2)对运算能力的认识,运算的正确、有据、合理、简洁是运算能力的主要特征。运算能力并非一种单一的、孤立的数学能力,而是运算技能与逻辑思维等的有机整合。在实施运算分析和解决问题的过程中,要力求做到善于分析运算条件,探究运算方向,选择运算方法,设计运算程序,使运算符合算理,合理简洁。换言之,运算能力不仅是一种数学的操作能力,更是一种数学的思维能力。,核心概念之七:推理能力,此次标准提出的推理能力与过去相比,有这样一些特点:一是进一步指明了推理在数学学习中的重要意义。标准指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式”。它对教学的启示是,不仅要引导学生认识到推理是数学的重要基础之一,它与人们的生活息息相关,更重要的是要逐步培养学生运用推理进行思维的方式。,突出了合情推理与演绎推理,二是基于数学推理的特点,突出了合情推理与演绎推理这条主线。指出在数学思维和问题解决的过程中,两种推理功能不同,相辅相成合情推理用于探索思路,发现结论;演绎推理用于证明结论。,引导学生多经历“猜想证明”的问题探索过程,三是强调推理能力的培养“应贯穿于整个数学学习过程中”。,其一,它应贯穿于整个数学课程的各个学习内容,其二,它应贯穿于数学课堂教学的各种活动过程其三,它应贯穿于整个数学学习的环节也应贯穿于三个学段,合理安排,循序渐进,协调发展,通过多样化的活动,培养学生的推理能力,反思传统教学,对学生推理能力的培养往往被认为就是加强逻辑证明的训练,主要的形式就是通过习题演练以掌握更多的证明技巧。显然,这样的认识是带有局限性的。,标准强调通过多样化的活动来培养学生的推理能力。如标准提出:“在参与观察、实验、猜想、证明、综合实践等数学活动中,发展合情推理和演绎推理能力,”(总目标),“体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多样化形式的数学活动中,发展合情推理与演绎推理的能力”(三学段),使学生多经历“猜想证明”的问题探索过程,在“猜想证明”的问题探索过程中,学生能亲身经历用合情推理发现结论、用演绎推理证明结论的完整推理过程,在过程中感悟数学基本思想,积累数学活动经验,这对于学生数学素养的提升极为有利。教师要善于对素材进行此类加工,引导学生多经历这样的活动。,核心概念之八:模型思想,在义务教育阶段提出模型思想主要有如下理由:第一,模型思想是一种基本的数学思想;第二,模型思想及相应的建模活动与很多课程目标点密切相关(如数感、符号意识、几何直观、发现、提出问题能力、数学的联系、数学应用意识、改善数学学习方式等等),提出模型思想能很好地支撑这些课程目标的实现;,第三,模型思想本身就渗透于各课程内容领域之中,突出模型思想有利于更好理解、掌握所学内容;第四,培养学生的模型思想对义务教育阶段学生来说是可行的。此外还要看到,数学建模已是高中数学课程的学习内容,提出模型思想亦能更好与高中课程衔接。,模型思想,对数学建模的认识,所谓数学模型,就是根据特定的研究目的和问题,采用形式化的数学语言,去抽象地,概括地表征所研究对象的主要特征、关系所形成的一种数学结构。在义务教育阶段数学中,用字母、数字及其他数学符号建立起来的代数式、关系式、方程、函数、不等式,及各种图表、图形等都是数学模型。,数学建模就是通过建立模型的方法来求得问题解决的数学活动过程。这一过程的步骤可用如下框图来体现:,这些步骤反映的是一个相对严格的数学建模过程,义务教育阶段特别是小学的数学建模视具体课程内容要求,不一定完全经历所有的环节,这里有一个逐步提高的过程。,标准中模型思想的含义及要求,模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。,使学生体会和理解数学与外部世界的联系是这一核心概念的本质要求,标准从义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:,首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。,模型思想的培养,在三学段,主要是结合相关概念学习,引导学生运用函数、不等式、方程、方程组、几何图形、统计表格等分析表达现实问题,解决现实问题。模型思想的渗透是多方位的。模型思想的感悟应该蕴含于日常教学之中,,使学生经历“问题情境建立模型求解验证”的数学活动过程,“问题情境建立模型求解验证”的数学活动过程体现了标准中模型思想的基本要求,也有利于学生在过程中理解、掌握有关知识、技能,积累数学活动经验,感悟模型思想的本质。这一过程更有利于学生去发现、提出、分析、解决问题,培养创新意识。,情境与模型,情境与情景,这两者似乎有一定区别:,从内涵看,情境与情景,前者宏观,后者微观;前者包容量较大,内涵更丰富,常常处于动态,具有过程性,而后者是问题的一个背景素材。就来源看,后者一般是数学问题的现实生活素材,而前者除了可以来自现实生活外,也可以来源于数学自身和探究中引发的新的情境,即数学情境并不局限于现实生活素材。一个好的数学情境,应该是有鲜明的目标指向,能融数学教与学为一体,具有数学教学活动的内驱力,并使数学课堂具有自我生长性的立体的环境。,同一模型的多重情境与同一情境的多种模型,前者不仅反映出数学问题的来源和应用环境是多样的,在教学中运用得当,还有利于学生的知识迁移和融会贯通,培养学生发散性思维;后者则有利于以情境作载体,通过模型形成系列性的问题探讨,有利于培养学生层层深入的探索精神。我们对这两种途径都还缺乏必要的理论和实践研究。,同一模型的多重情境,看图说故事,5,11,15,2,由模型想情境,核心概念之九:应用意识,应用意识有两个方面的含义:一方面有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题数学知识现实化,另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。现实问题数学化,核心概念之十:创新意识,创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。,从基础、核心、方法三个方面指明了创新意识的要素。这为我们培养学生创新意识提出了几个基本的切入点和路径,使创新意识的培养落在了比较实在的载体上,即围绕这三个要素,教师应紧紧抓住“数学问题”、“学会思考”、“猜想、验证”这几个点,做足教学中的“文章”,创新意识培养的目标就有可能得到落实。,3.关于课程目标的修改,在目标的结构上仍按:,总体目标,总体表述,知识技能,数学思考,问题解决,情感态度,学段目标,第一学段,第二学段,第三学段,(1)目标上有哪些变化?,在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。,变化之一:明确提出四基,即“基础知识、基本技能、基本活动经验、基本思想”变化之二:明确提出“发现问题和提出问题的能力、分析问题和解决问题的能力”(四能)变化之三:加强数学联系,提出“体会数学知识之间、数学与其他学科之间、数学与生活之间的联系”变化之四:对于情感态度的培养,进一步明确“了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯”变化之五:针对学科精神的培养,明确提出“具有初步的创新意识和科学态度”,数学课程总目标有那些新变化?,数学课程目标的变化分析,变化之一:从“双基”到“四基”注重学生“双基”的学习,促进学生的发展历来是我国数学教育目标的重要组成部分。经过长期的教育实践和探索,数学“双基”教学已成为我国数学教育极富自我特点的教学形式。而中国学生基础扎实也成为国际数学教育界所公认的事实。此次课程改革继承了这一传统,促进学生数学“双基”的发展成为三维目标中的重要要求。,为什么要从“双基”到“四基”?,在此次课标修定中,人们在认真总结课改经验之后也对数学“双基”进行了反思:第一,从发展来看,对数学“双基”的理解、认识亦需与时俱进。比如,一些传统的内容需要删减(如繁杂的计算、证明技巧的演练、脱离实际的陈旧的习题等),一些体现时代要求的内容需要增加(如算法、统计、概率、数学综合与实践问题等)。此外,在实践中以应对考试为目的的“双基”过度训练也导致一些数学课堂教学价值的失衡。,第二,从数学自身来看,“双基”更多的是对数学原理、定理、概念、公式等结论性知识的反映,学习它们固然重要,但其背后更为深层次的东西是什么呢?数学的本质不在于它的结论,而在于它的思想。数学课程不应仅仅满足于教给学生一些结论,而应该能给学生以更多数学思想、精神的浸润。,如何能从课程目标上支撑创新精神和实践能力的培养呢?,第三,从时代要求来看,创新精神和实践能力的培养是数学课程必须加强的目标要求,而这一要求的落实仅靠“双基”是难以支撑的。事实上,学生创新精神的培养除了要掌握必要的数学知识和技能外,还要学会数学的思考,并在多样化的数学活动中积累经验。数学课程目标应该在这些“点”上更鲜明地反映对创新人才培养的要求。,第四,发展学生的数学素养,形成数学智慧,并非单纯地通过接受数学事实来实现,它更多地需要通过对数学思想方法的领悟,对数学活动经验的条理化以及对数学知识的自我组织等活动来实现。因此,我们应该在课程中提供一个用以支撑它的更为科学的结构框架,,何为数学基本思想?,德国诺贝尔奖获得者、物理学家冯.劳厄:“教育无非是一切已学过的东西都忘掉时所剩下的东西”,数学课堂教学应该是有思想的教学!有了思想才有了课堂的生命,什么是数学学习中最本质的东西?,波利亚(美)一贯强调把“有益的思考方式,应有的思维习惯”放在教学的首位。闵山国藏(日本)指出,学生在毕业之后不久,数学知识就很快忘掉了,“然而,不管他们从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、思维方法、推理方法和着眼点(如果培养了这种素质的话),在随时发生作用,使他们受益终身。”,可以讨论的观点:,“数学发展所依赖的思想在本质上有三个:抽象、推理、模型,通过抽象,在现实生活中得到数学的概念和运算法则,通过推理得到数学的发展,然后通过模型建立数学与外部世界的联系”(史宁中,数学思想概论第一辑,东北师范大学出版社,2008.6,第一页)。从数学产生、数学内部发展、数学外部关联三个维度上概括了对数学发展影响最大的三个重要思想。,何为数学基本思想?,数学基本思想是指对数学及其对象、数学概念和数学结构以及数学方法的本质性认识数学思想蕴涵在数学知识形成、发展和应用的过程中;它制约着学科发展的主线和逻辑架构;是数学知识和方法在更高层次上的抽象与概括。如归纳、演绎、抽象、转化、分类、模型、结构、数形结合、随机等。,数学思想的层次性、多样性,以三个重要数学思想为例,下一层次的数学思想,还有很多。例如由“数学抽象的思想”派生出来的:分类的思想,集合的思想,数形结合的思想,“变中有不变”的思想,符号表示的思想,对称的思想,对应的思想,有限与无限的思想,等等。,例如由“数学推理的思想”派生出来的:归纳的思想,演绎的思想,公理化思想,转换化归的思想,联想类比的思想,逐步逼近的思想,代换的思想,特殊与一般的思想,等等。例如由“数学建模的思想”派生出来的:简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,抽样统计的思想,等等。,如何理解?,三个常用的概念:数学思想数学方法数学思想方法,数学基本思想和数学方法,数学基本思想和数学方法既有区别也有密切的联系。如前所述,数学基本思想表现相对宏观,体现的是对数学对象的一种本质性认识;而数学方法常常是受数学思想制约的,表现相对具体,并具有程序性、步骤性、路径性和可操作性。例如归纳,从一般意义上讲,它表现为从特殊到一般的推理的思想,但若具体使用于一个关于自然数命题结论的获得时,它就是所谓的归纳法了。,注意教材中蕴含的数学基本思想,在课程内容和教材中,数学基本思想其实是很丰富的,这些思想常常处于潜形态,教师要成为有心人,经验与思想?,R.柯朗H.罗宾:“只有靠了数学自身的经验,才能把握数学思想是什么?”,什么是数学活动经验?黄翔获得数学活动经验应成为数学课堂教学关注的目标课程.教材.教法2008.1期,数学活动经验的基本特征:数学活动经验是基于学习主体的,它带有明显的主体性特征,因此也就具有学习者的个性特征,它属于特定的学习者自己。主体性,数学活动经验是学习者在学习的活动过程中所获得的,离开了活动过程这一实践是不会形成有意义的数学活动经验的实践(过程)性,数学活动经验反映的是学习者在特定的学习环境中或某一学习阶段对学习对象的一种经验性认识,这种经验性认识更多的时候是内隐的,原生的或直接感受的、非严格理性的,也是可在学习过程中可变的。发展性,即使是外部条件看来相同,但是对同一对象,每一个学生仍然可能具有不同的经验多样性,有学者提出数学活动经验的类型:,直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等。,间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等。设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等。思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等。,数学活动经验并不仅仅是解题的经验,更加重要的是在数学活动中思考的经验,提出数学活动经验,还有一个重要目的,就是培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果,因为进行创造,获得新结果的主要途径是作出猜想。数学活动经验并不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验。,数学基本活动经验:,学习主体通过亲身经历数学活动过程所获得的具有个性特征的经验。,“四基”是客观性知识与主观性体验的结合是结果性知识与过程性活动的结合,经验,在哲学上指人们在同客观事物直接接触的过程中通过感觉器官获得的关于客观事物的现象和外部联系的认识。,“四基”与数学素养,掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验发展学生的数学素养,培养学生的创新精神和实践能力,“四基”是一个整体,如何处理好它们之间的关系?如何在课堂教学实践中寻求有效途径具体落实“四基”目标是值得进一步探究的问题。,变化之二:在数学问题解决的过程中,发展学生的“四能”,新课标在数学课程总目标第二条中提出:“运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力”(简称“四能”)。与原课标总目标的表述相对照,此次新增了“发现问题”、“提出问题”的要求,并且将其上升到能力培养的层次,这是一个重要的变化。,目标点二:为何要强调发现问题、提出问题?,在数学中,发现结论常常比证明结论更重要创新性的成果往往始于问题传统教学在这方面的不足问题解决的全过程是发现、提出、分析、解决问题的过程,应该通过数学课堂培养学生的问题意识,发现问题、提出问题是创新的基础诺贝尔奖金获得者李政道教授认为“我们学习知识,目的是要做到学问。学习,就是学习问问题,学习怎样问问题。”,做学问与学问,我们需要问题驱动、分析探究的课堂,研究始于问题,同样,教学也应该始于问题没有问题的课堂是没有思想、没有生命力的课堂思想是课堂的生命!问题是课堂的灵魂!,教师要善于将陈述性知识的教材进行二度设计转换成一系列问题序列,使教学成为问题解决的活动过程教师更要善于创设问题情境,引导学生自己去发现、提出、分析解决问题,变化之三:体会数学“三联系”,又可把“三联系”归结为数学内部的联系和数学与外部的联系数学知识之间的联系(系统性、综合性)数学与其他学科之间的联系(相关性、工具性)数学与生活之间的联系(应用性),变化之四:首次提出“养成良好的学习习惯”,第一次提出“培养学生良好的数学学习习惯”标准在“情感与态度”目标中具体指明了其含义:“养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯。”,变化之五:对创新意识和科学态度的强调,关于科学态度,课标对它的解释是“坚持真理、修正错误、严谨求实”。显然,我们不应将其视为一些通常的应景之词,而应看成是能充分反映数学抽象性、逻辑性、严谨性、符号化特征的对数学科学态度、精神的追求,也是能够在数学课堂上一步步做起,不断修炼,能够企及的目标。,4.关于内容标准的修改,将“内容标准”的提法改为“课程内容”,课程内容中的条目数量统计(三学段),原标准修订标准差数与代数4852(3)+4(3)图形与几何8389(4)+6(4)统计与概率1311-2综合与实践43-1合计148155(7)+7(7),三学段关于课程内容的修改,数与代数:增加了:知道a的含义(这里a表示有理数)知道最简二次根式和最简分式的概念能进行简单的整式乘法运算中增加了一次式与二次式相乘会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等会用待定系系数法确定一次函数的解析表达式,数与代数:,增加了:*了解一元二次方程根与系数关系、*能解简单的三元一次方程组、*知道给定不共线三点的坐标可以确定一个二次函数。,删除的内容:,能对含有较大数字的信息作出合理的解释与推断了解有效数字的概念能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题求绝对值时关于“绝对值符号内不含字母”的限制。,图形与几何(三学段):,内容结构上略有调整(图形的性质、图形的运动、图形与坐标)(原来是图形的认识、图形与变换、图形与坐标、图形与证明)对基本事实规定更清晰(9条),不再使用“公理”这个词增强了“图形与几何”内容的条理性,进一步阐述了合情推理和演绎推理的关系,强调了几何证明表述方式的多样性,增加了:,会比较线段的长短,理解线段的和、差,以及线段中点的意义了解平行于同一条直线的两条直线平行会按照边长的关系和角的大小对三角形进行分类了解并证明圆内接四边形的对角互补;,了解正多边形的概念及正多边形与圆的关系尺规作图:过一点作已知直线的垂线已知一直角边和斜边作直角三角形作三角形的外接圆、内切圆作圆的内接正方形和正六边形,*了解平行线性质定理的证明;*了解相似三角形判定定理的证明;*探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧;*探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等;*了解圆周角及其推论的证明;,*了解平行线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论