




免费预览已结束,剩余32页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IntroductiontotheExtendedFiniteElementMethod(XFEM),MatthewPaisIdahoNationalLaboratoryAugust25,2010,2,Overview,BasicConceptsLevelSetMethodExtendedFiniteElementMethod(XFEM)BasicformulationLevelsetrepresentationsofcracks,inclusions,andvoidsEnrichmentfunctionsforcracks,inclusions,andvoidsIntegrationofenrichedelementsApplicationstofluidsReanalysisofXFEMMotivationAlgorithmBasicanalysisofmethodInitialresultsConclusions,EnergyReleaseRate/SIF,G,energyreleaserateamountofenergyreleasedbyunitadvanceofcrackIngeneralacrackwillgrowinthedirectionwhichmaximizesGKi,stressintensityfactorcharacterizesthemagnitudeofamplificationofappliedstressatcracktipEspeciallyusefulforlinearelasticcasewhichpredictsr-1/2singularityatcracktipSinglevaluegivesstateofstressaroundthecracktip2D:KIandKII,3D:KI,KII,andKIII,3,ModeI:Opening,ModeII:In-PlaneShear,ModeIII:Out-of-PlaneShear,LevelSetMethod,Thelevelsetmethod1,2isafronttrackingmethodgivenintermsofthefrontvelocitywithrespecttotimeThelevelsetfunctioniscommonlydiscretizedandinterpolationbetweenpointsisperformedAmmenabletouseinFEenvironmentHasbeenusedinshapeoptimization3withintheFEframework,4,1Osheretal,1988,Frontspropagatingwithcurvaturedependentspeed,J.Comp.Phys.,79,12-49.2Stolarksaetal,2001,ModelingcrackgrowthbylevelsetsintheXFEM,Int.J.Num.Meth.Eng.,51,943-960.3Wangetal,2004,Structuralshapeandtopologyoptimizationinalevelsetbasedframework,Struct.Multi.Opt.,27,1-19.,5,ModelingCrackGrowthinFE,FiniteelementmeshcorrespondstothedomainofthegivenmaterialUsesingularelementsatcracktiptorepresenttheasymptoticcracktipdisplacementfield1Ascrackgrows,mustrecreatemesharoundthecracktip,whichcanbeexpensive2CreateschallengesintrackingtimehistoryofpointsnearcrackwhicharebeingremeshedDisplacement,stress,orstrain,1Barsoum,1976,Ontheuseofisoparametricfiniteelementsforlinearfracturemechanics,Int.J.Num.Meth.Eng.,10,25-37.2Malignoetal,2010,Athree-dimensionalnumericalstudyoffatiguecrackgrowthusingremeshing,Eng.Frac.Mech.,77,94-111.,6,eXtendedFiniteElementMethod(XFEM),Belytschko1StrongDiscontinuitiesCracksDaux2andSukumar3WeakDiscontinuitiesInclusionsVoidsDiscontinuousbehaviorembeddedintoelementsusinglocalenrichmentfunctions,additionalnodalDOFsDoesnotrequiremeshtoconformtodomainNoremeshingneededforevolvingdiscontinuitiesLevelsets4usedtotrackdiscontinuities,Crack,Inclusion,Void,1Belytschkoetal,1999,Elasticcrackgrowthinfiniteelementswithminimalremeshing,Int.J.Num.Meth.Eng.,45,601-620.2Dauxetal,2000,ArbitrarybranchedandintersectingcrackswithXFEM,Int.J.Num.Meth.Eng.,48,1741-1760.3Sukumaretal,2001,ModelingholesandinclusionbylevelsetsintheXFEM,Comp.Meth.App.Mech.Eng,190,6183-6200.4Osheretal,1988,Frontspropagatingwithcurvaturedependentspeed,J.Comp.Phys.,79,12-49.,7,GeneralXFEMApproximation,Uselowercasetorepresentenrichment,uppercaseforshiftedShift1enrichmenttorecoverFEMapproximationatnodeswhereenrichmentfunctionisnonzeroInterestedinenrichmentfunctionsrepresentingdiscontinuitiesSuperimposingcontinuousanddiscontinuousapproximations,EnrichmentFunction,AdditionalSpatialDOFatNodeI,TraditionalFEMApproximation,1Belytschkoetal,2001,Arbitrarydiscontinuitiesinfiniteelements,Int.J.Num.Meth.Eng.,50,993-1013.,LevelSetRepresentationofCracks,IntroducedbyStolarska1asanextensionoftheworkbySethian2IntersectionoftwolevelsetsdefinestheopensectionCanbeupdatedifdesiredusingwellknownmethodsNarrowband3,fastmarchingmethod4decreasecomputationaltime,1Stolarksaetal,2001,ModelingcrackgrowthbylevelsetsintheXFEM,Int.J.Num.Meth.Eng.,51,943-960.2Osheretal,1988,Frontspropagatingwithcurvaturedependentspeed,J.Comp.Phys.,79,12-49.3Adalsteinssonetat,1995,AFastLevelSetMethodforPropagatingInterfaces,J.Comp.Phys.,118,269-277.4Sethian,1996,AFastMarchingLevelSetMethodforMonotonicallyAdvancingFronts,Proc.Nat.Acad.Sci.,93,1591-1595.,9,CrackTipEnrichmentFunction,Cracktipenrichmentfunctions1embedthecracktipsingularityintotheenrichedelementAdditionalenrichmentfunctionsavailableforothercracktipconditionsBi-material,branching,cohesive,functionallygradedandorthotropicmaterials2,Crack,1Flemingetal,1997,Enrichedelement-freeGalerkinmethodsforcracktipfields,Int.J.Num.Meth.Eng.,40,1483-1504.2Belytschkoetal,2009,Areviewofextended/generalizedFEMformaterialmodeling,Int.J.Num.Meth.Eng.,17,043001.,10,HeavisideEnrichmentFunction,Crack,Heaviside1functionisusedinelementswhichhavetheirsupportcompletelycutbythecrackPlacesdiscontinuitydirectlyatcracklocationwithinelement,1Moesetal,1999,Afiniteelementmethodforcrackgrowthwithoutremeshing,Int.J.Num.Meth.Eng.,46,131-150.,11,CrackEnrichedElements,NodeswithHeavisideEnrichment(2additionalDOF),NodeswithCrackTipEnrichment(8additionalDOF),N,n,Nn,裂尖单元,贯穿单元,裂尖单元,常规单元,12,DiscreteEquations,c,u,t,b,n,to,WeightedResidual,Strain-DisplacementRelationship,EquilibriumEquation,ConstitutiveEquation,BoundaryConditions,13,WeightedResidualMethod,14,XFEMStiffnessMatrix,uaretraditionalDOFa,bareenrichedDOFKuuisindependentofcracklocation,traditionalFEstiffnessmatrixKua,Kaa,KabarecomponentswithHeavisideenrichmentKub,Kab,KbbarecomponentswithcracktipenrichmentKua,Kub,Kabareaddcouplingbetweentraditional,enrichedDOF,Example:Mixed-ModeEdgeCrack,H,1Sutradhar,Paulino,Gray.SymmetricGalerkinBoundaryElementMethod.Springer-Verlag,2008.,CrackOpeningwithGrowth,16,Displacementismagnifiedtoshoweffectofenrichment.,RecentWorkonCracks,Areaofcracktipenrichmenttoimproveconvergencerate1CorrectedXFEM2toremoveproblemswithblendingelementsIntroductionofharmonicenrichmentfunctions3tounifyenrichmentforbranching,homogenous,andintersectingcracksIntroductionofoptimizedenrichmentfunctions4forhomogeneousandcohesivecracksUseofXFEMforinterpretationofstructuralhealthmonitoring(SHM)datathroughoptimization5UseofXFEMforoptimizationofstructurewithrespecttofatiguelife6,1Labordeetal,2005,High-OrderXFEMforCrackedDomains,Int.J.Num.Meth.Eng.,64,354-381.2Fries,2007,ACorrectedXFEMApproximationWithoutProblemsinBlendingElements,Int.J.Num.Meth.Eng.,75,503-532.3Mousavietat,2010,AUnifiedTreatmentofMultiple,IntersectingandBranchedCracksinXFEM,Int.J.Num.Meth.Eng.,InPress.4Abbasetal,2010,AUnifiedEnrichmentSchemeforFractureProblems,WCCM/APCOM2010,Sydney,Australia.5Waismanetal,2009,DetectionandQuantificationofFlawsinStructuresbyXFEM,10thUSNat.Cong.Comp.Mech.,Columbus,OH.6Edke,ShapeOptimizationfor2DMixed-ModeFractureUsingXFEMandLSM,Struct.Mutli.Opt.,InPress.,18,LevelSetRepresentationofInclusion/Void,IntroducedbySukumar1asanextensionoftheworkdonebyDaux2DefinenegativevaluestobeinteriorofinclusionorvoidCanbeupdatedifdesiredusingwellknownmethodsNarrowband3,fastmarchingmethod4decreasecomputationaltime,1Sukumaretal,2001,ModelingHolesandInclusionbyLevelSetsintheXFEM,Comp.Meth.App.Mech.Eng,190,6183-6200.2Dauxetal,2000,ArbitraryBranchedandIntersectingCrackswithXFEM,Int.J.Num.Meth.Eng.,48,1741-1760.3Adalsteinssonetat,1995,AFastLevelSetMethodforPropagatingInterfaces,J.Comp.Phys.,118,269-277.4Sethian,1996,AFastMarchingLevelSetMethodforMonotonicallyAdvancingFronts,Proc.Nat.Acad.Sci.,93,1591-1595.,19,InclusionEnrichmentFunction,Interface,1Moesetal,2003,AComp.ApproachtoHandleComplexMicrostructureGeometries,Comp.Meth.App.Mech.Eng,192,3163-3177.,=LevelSetatNodeI,Inclusionfunction1isusedinelementswithmultiplematerialsNoneedtoshiftenrichmentasitiszeroatallnodes,20,VoidEnrichmentFunction,Material,1Dauxetal,2000,ArbitrarybranchedandintersectingcracksintheXFEM,Int.J.Num.Meth.Eng.,48,1741-1760.,Voidfunction1isusedinelementswhichcontainvoidboundaryNoadditionaldegreesoffreedom,modifiesdisplacementdirectlyOnlyperformnumericalintegrationinregionswhichcontainmaterial,Void,21,IntegrationofEnrichedElement,Forenrichedelement,subdivide1quadrilateralintotrianglesandintegrateovereachtriangletoavoiddifficultieswithintegratingdiscontinuousdomain.,1Sukumaretal,2003,ModelingQuasi-StaticCrackGrowthwithXFEM,PartI:ComputerImplementation,Int.J.Sol.Str.,40,7513-7537.,RecentWorkonIntegration,Mousavi1presentedgeneralizedgaussquadraturerulesoverarbitrarypolygonswhereoptimizationisusedtoidentifythelocationandweightsofthegausspointsMousavi2presentedtheDuffytransformationfromatriangle(tetrahedron)toasquare(cube)forintegrationNatarajan3presentedatransformationtoaunitdiskbasedonSchwarz-ChristoffelmappingPark4presentedatransformationfromatriangle(tetrahedron)toasquare(cube)wherethesingularityisplacedattheoriginofthesquare(cube)inthetransformedspace,22,1Mousavietal,2009,GeneralizedGaussianQuadratureRulesonArbitraryPolygons,Int.J.Num.Meth.Eng.,82,99-113.2Mousavietal,2010,GeneralizedDuffyTransformationforIntegratingVertexSingularities,Comp.Meth.,45,127-140.3Natarajanetat,2009,NumericalIntegrationOverArbitraryPolygonalDomainsBasedonSchwarz,Int.J.Num.Meth.Eng.,80,103-134.4Parketal,2009,IntegrationofSingularEnrichmentFunctionsintheGFEM/XFEM,Int.J.Num.Meth.Eng.,78,1220-1257.,XFEMforFluidApplications,1Fries.2009.TheintrinsicXFEMforTwo-FliudFlows,Int.J.Num.Meth.Eng.,60,437-471.2Friesetal.2009.OnTimeIntegrationintheXFEM.Int.J.Num.Meth.Eng.,79,69-93.3Fries.http:/www.xfem.rwth-aachen.de.,TwoincompressiblefluidsDensityandviscositydiscontinuousacrossinterfaceVelocity(strong)andpressure(weak)discontinuitiesStationarymesh,RisinggasbubbleinfluidTopbubblemoredensethanbottom,XFEMinABAQUS,XFEMimplementationofcohesivecrackmodelusingphantomnodemodel1Limitations2OnlySTATICanalysisOnlylinearcontinuumelementsNoparallelprocessingNocontourintegrals(availablein6.9-EF3andnewer)NofatiguecrackgrowthOnlyonecrackwithinanelementAcrackmaynotturnmorethan90degreeswithinanelementAcrackmaynotbranchNoimplementationinABAQUS/Explicit2,1Songetal,2006,DynamicCrackandShearBandPropagationwithPhantomNodes,Comp.Meth.App,Mech.Eng,193,3524-3540.22009,ExtendedFiniteElementMethod(XFEM),ABAQUS6.9UpdateSeminar,DassaultSystems.32009,ABAQUS6.9ExtendedFunctionality(EF)Overview,ABAQUS6.9-EFUpdateWebinar,DassaultSystems.,25,XFEMinMATLAB,Created2Dplanestress/strainXFEMcodeAllowsrectangulardomainwitharbitraryboundaryandloadingconditionsHomogeneousandbi-materialcracks,voidandinclusionenrichmentsNarrowbandlevelsetforcracks,fulllevelsetforinclusionsandvoidsIntegrationofenrichedelementsbytriangularsubdivisionContourintegralsforcalculatingSIFsFinitecrackgrowthincrementorParisLawtogrowcrackPlottingoflevelsets,mesh,displacementandstressesBenchmarksforenrichments,fatiguecrackgrowth,andoptimizationimplementation1Dand2DMATLABGoogle:AbaqusXFEMorMATLABXFEM,ReanalysisofXFEM,FatigueCrackGrowth,Fatiguecracksformastheresultofrepeatedloadingbelowtheyieldstress,eventuallyleadingtofailureHighcyclefatigue,Nfail106+cyclesModelspredictgrowthwithanordinarydifferentialequation,da/dN=f(K)Manymodelsprovidef(K)invaryinglevelsofcomplexity,N,K,IncidentsfromFatigueFailure,1954SouthAfricanAirwaysFlight201,21deaths1954BOACFlight781,35deaths1957CebeDouglascrash,25deaths1968HelicoptercrashinCompton,21deaths1980AlexanderL.Keillandoilplatform,123deaths1985JapanFlight123,521deaths1988AlohaAirlinesFlight243,1death1989UnitedFlight232,112deaths1992ElAlFlight1862,43deaths1998ICEtraincrash,101deaths2002ChinaAirlinesFlight611,225deaths2005ChalksOceanAirwaysFlight101,20deaths2007MissouriAirNationalGuardcrashed,pilotejected2009SouthwestAirlinesFlight2294,footballsizedholeMetalfatiguehasbeenandstillisachallengeforengineeringapplicationsandcanleadtothelossoflife.,28,29,Motivation,ForwardEulermethodisconditionallystable,becomesunstableforsomeaorNSeriesoflinearapproximationstoexponentialfunctionCrackpathbecomesfunctionofh,aorN,30,ObservationofKforQuasi-StaticGrowth,Forsameboundaryconditions:KuuareequalforAandBKaa,Kuagrow,oldportionconstantKbb,Kub,Kabchangebasedontiplocation,A,B,31,ReanalysisTechniques,ExistingreanalysistechniquesmaybeappliedtoXFEMformodelingquasi-staticcrackgrowthDevelopedindesignandoptimizationfieldsConsidersmallchangestosystemofequationsbymodifyingKSavingsinassemblyandfactorizationofthesystemofequationsApproximatemethodsIterativesolver1foraddingDOFstosystemofequationsExactmethodsIncrementalCholesky2factorizationSherman-Morrison-Woodbury3formula,1Wuetal,2006,Staticreanalysisofstructureswithaddeddegreesoffreedom,Comm.Num.Meth.Eng.,22,269-281.2Chapraetal,2002,Numericalmethodsforengineers,4thedition,McGrawHill,NewYork,NY.3Woodbury,1950,Invertingmodifiedmatrices,Mem.Rpt.42,Stat.Res.Gr.,PrincetonUniversity,4ppMR38136.,32,UpdatingStiffnessMatrix,Constant,33,UpdatingFactorizedStiffnessMatrix,Constant,Factor,Appe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兰州外语职业学院《语言学概论》2023-2024学年第二学期期末试卷
- 新疆石河子职业技术学院《运动处方》2023-2024学年第二学期期末试卷
- 石家庄人民医学高等专科学校《材料专业英语》2023-2024学年第一学期期末试卷
- 泰山学院《运动辅项(一)》2023-2024学年第二学期期末试卷
- 脑梗取栓护理查房
- 无创溶斑培训大纲
- 2025合同履行争议中的法律问题
- 2025金融衍生品与配套人民币借款合同书
- 物业管理条例培训
- 2025年普法知识竞赛题库及答案(共70题)
- CJ/T 123-2016 给水用钢骨架聚乙烯塑料复合管
- 《习作:漫画的启示》学习任务群教学课件-课例1
- 跟着音乐游中国智慧树知到期末考试答案章节答案2024年广州大学
- 传染病预防方案与预防措施(2篇)
- 环氧地坪漆工程全施工合同范本
- 中国法律史-第二次平时作业-国开-参考资料
- 人工智能智慧树知到期末考试答案章节答案2024年复旦大学
- 7s办公室管理培训
- 股骨粗隆间骨折08023课件
- 戊烷油加氢装置HAZOP分析报告
- 《红楼梦》人物性格特点
评论
0/150
提交评论