




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,例1,例2,复习引入,空间向量基本定理,课外补充练习,2,3,4,得证.,5,类比平面向量的基本定理,在空间中应有一个什么结论?,6,然后证唯一性,证明思路:先证存在,推论,注:空间任意三个不共面向量都可以构成空间的一个基底.如:,7,推论:设点O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数对x、y、z使,O,A,B,C,P,例1,例2,例3,8,答案,练习,例1,9,解:,连AN,10,练习,B,例3,11,(1)答案,(2)答案,例2(课本例)如图,已知平行四边形ABCD,从平面AC外一点O引向量,求证:四点E、F、G、H共面;平面EG/平面AC.,12,例2(课本例)已知ABCD,从平面AC外一点O引向量,求证:四点E、F、G、H共面;,平面AC/平面EG.,证明:,()代入,所以E、F、G、H共面。,13,证明:,由面面平行判定定理的推论得:,14,1.对于空间任意一点O,下列命题正确的是:(A)若,则P、A、B共线(B)若,则P是AB的中点(C)若,则P、A、B不共线(D)若,则P、A、B共线,2.已知点M在平面ABC内,并且对空间任意一点O,,则x的值为(),15,1.下列说明正确的是:(A)在平面内共线的向量在空间不一定共线(B)在空间共线的向量在平面内不一定共线(C)在平面内共线的向量在空间一定不共线(D)在空间共线的向量在平面内一定共线,2.下列说法正确的是:(A)平面内的任意两个向量都共线(B)空间的任意三个向量都不共面(C)空间的任意两个向量都共面(D)空间的任意三个向量都共面,16,补充练习:已知空间四边形OABC,对角线OB、AC,M和N分别是OA、BC的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 温州市22中2025届高三数学试题下学期4月模拟训练试题(二)含解析
- 浙江省温州市2025年高三下学期第一次月考生物试题试卷含解析
- 十堰市丹江口市2025届四下数学期末检测模拟试题含解析
- 山东蒙阴县2024-2025学年初三月考(5)物理试题含解析
- 浙江师范大学《资产评估学B》2023-2024学年第二学期期末试卷
- 上海电力大学《可编程控制技术》2023-2024学年第二学期期末试卷
- 邵阳工业职业技术学院《物流系统规划与设计A》2023-2024学年第一学期期末试卷
- 江苏省南通市崇川区2025年第二学期初三年级期末质量调查生物试题含解析
- 浙江中医药大学滨江学院《医学课程》2023-2024学年第二学期期末试卷
- 泉州工程职业技术学院《设计竞赛》2023-2024学年第二学期期末试卷
- 敏捷项目管理与敏捷方法
- 《社会网络分析法》课件
- 2024城镇燃气用环压式不锈钢管道工程技术规程
- word个人简历空白
- 2024年江苏安东控股集团有限公司招聘笔试参考题库含答案解析
- 防汛防洪装备器材展示与操作演示
- 如何在Python中创建循环结构
- 《养成良好的行为习惯》主题班会课件
- 部编版六年级下册道德与法治全册教案
- 2023年10月自考00226知识产权法试题及答案含评分标准
- 四年级下册劳动教育全册教学课件
评论
0/150
提交评论