已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1 特征值与特征向量习题21求矩阵M的特征值和特征向量2. 已知矩阵M的一个特征值为3,求另一个特征值及其对应的一个特征向量3. 已知矩阵M,向量,.(1)求向量23在矩阵M表示的变换作用下的象;(2)向量是矩阵M的特征向量吗?为什么?4. 已知矩阵A,设向量,试计算A5的值5. 已知矩阵A,其中aR,若点P(1,1)在矩阵A的变换下得到点P(0,3)(1)求实数a的值;(2)求矩阵A的特征值及特征向量6. 已知矩阵A,若矩阵A属于特征值6的一个特征向量1,属于特征值1的一个特征向量2,求矩阵A,并写出A的逆矩阵7. 已知矩阵A对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90.(1)求矩阵A及A的逆矩阵B;(2)已知矩阵M,求M的特征值和特征向量;(3)若在矩阵B的作用下变换为,求M50.(结果用指数式表示)8. 已知二阶矩阵M的一个特征值8及与其对应的一个特征向量1,并且矩阵M对应的变换将点(1,2)变换成(2,4)(1)求矩阵M;(2)求矩阵M的另一个特征值及与其对应的另一个特征向量2的坐标之间的关系;(3)求直线l:xy10在矩阵M的作用下的直线l的方程9. 给定矩阵M,N及向量1,2.(1)求证M和N互为逆矩阵;(2)求证1和2都是矩阵M的特征向量10给定矩阵M及向量.(1)求矩阵M的特征值及与其对应的特征向量1,2;(2)确定实数a,b,使向量可以表示为a1b2;(3)利用(2)中的表达式计算M3,Mn;(4)从(3)中的运算结果,你能发现什么?参考答案1.【解】矩阵M的特征多项式f()(1)(6)令f()0,解得矩阵M的特征值11,26.将11代入方程组易求得为属于11的一个特征向量将26代入方程组易求得为属于26的一个特征向量综上所述,M的特征值为11,26,属于11的一个特征向量为,属于26的一个特征向量为.2【解】矩阵M的特征多项式为f()(1)(x)4因为13为方程f()0的一根,所以x1由(1)(1)40得21,设21对应的一个特征向量为,则由得xy令x1,则y1.所以矩阵M的另一个特征值为1,对应的一个特征向量为.3 【解】(1)因为2323,所以M(23),所以向量23在矩阵M表示的变换作用下的象为.(2)向量不是矩阵M的特征向量理由如下:M,向量与向量不共线,所以向量不是矩阵M的特征向量4 【解】矩阵A的特征多项式为f()2560,解得12,23.当12时,得1;当23时,得2,由m1n2,得,得m3,n1,A5A5(312)3(A51)A523(1)232535.5【解】(1),a4.(2)A,f()223.令f()0,得11,23,对于特征值11,解相应的线性方程组得一个非零解,因此1是矩阵A的属于特征值11的一个特征向量对于特征值23,解相应的线性方程组得一个非零解,因此2是矩阵A的属于特征值23的一个特征向量矩阵A的特征值为11,23,属于特征值11,23的特征向量分别为,.6 【解】由矩阵A属于特征值6的一个特征向量1,可知6,所以cd6,由矩阵A属于特征值1的一个特征向量2,可知,所以3c2d2.联立可得解得即A,A的逆矩阵A1.7【解】(1)A;BA1.(2)设M的特征值为,则由条件得0,即(3)(4)62760.解得11,26.当11时,由,得M属于1的特征向量为1;当26时,由6,得M属于6的特征向量为2.(3)由B,得,设m1n2mn,则由解得所以122.所以M50M50(122)M5012M5022650.8【解】(1)设矩阵M,则8,故由题意得,故联立以上两方程组可解得故M.(2)由(1)知矩阵M的特征多项式f()(6)(4)821016.令f()0,解得矩阵M的另一个特征值2.设矩阵M的属于特征值2的一个特征向量2,则M22,解得2xy0.(3)设点(x,y)是直线l上的任一点,其在矩阵M的作用下对应的点的坐标为(x,y),则,即代入直线l的方程并化简得xy20,即直线l的方程为xy20.9 【证明】(1)因为MN,NM,所以M和N互为逆矩阵(2)向量1在矩阵M的作用下,其象与其共线,即,向量2在矩阵M的作用下,其象与其共线,即,所以1和2都是M的特征向量10.【解】(1)矩阵M的特征多项式f()(2)(1)30(7)(4)令f()0,解得矩阵M的特征值14,27.易求得属于特征值14的一个特征向量1,属于特征值27的一个特征向量2.(2)由(1)可知ab,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024马脑山养殖户合同
- 2024楼顶广告牌安装合同范本
- 房产交易资金托管服务合同
- 社区环境卫生维护合同
- 授权经营合同范本
- 房屋建筑工程协议2024年
- 标准伤残赔偿协议书参考
- 2023年高考地理第一次模拟考试卷-(广东B卷)(考试版)A4
- 【人教版系列】四年级数学下册全册专项测评(含答案)
- 关于离婚协议书的撰写指南
- 生态文明学习通超星期末考试答案章节答案2024年
- 区病案质控中心汇报
- 期中测试卷(1-4单元)(试题)2024-2025学年四年级上册数学人教版
- 教育局职业院校教师培训实施方案
- 《万维网服务大揭秘》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 2024年新华社招聘应届毕业生及留学回国人员129人历年高频难、易错点500题模拟试题附带答案详解
- 人教版(2024新版)七年级上册英语Unit 5单元测试卷(含答案)
- (完整版)新概念英语第一册单词表(打印版)
- 美食行业外卖平台配送效率提升方案
- 中国民用航空局信息中心招聘笔试题库2024
- 芯片设计基础知识题库100道及答案(完整版)
评论
0/150
提交评论