




已阅读5页,还剩127页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
30/4/2009,.,黄山学院信息工程学院,自动化专业,自动控制原理,第五章频率分析法,第五章频率分析法,在工程实际中,人们常运用频率特性法来分析和设计控制系统的性能。,频率特性法是一种图解分析法,主要是通过系统的开环频率特性的图形来分析闭环系统的性能,因而可避免繁琐复杂的运算。来分析和设计控制系统的性能。,第一节频率特性,第二节典型环节与开环系统的频率特性,第三节频率域稳定判据,第五节闭环系统的频域性能指标,第四节稳定裕度,第五章频率分析法,第一节频率特性,频率分析法的数学模型是频率特性。通过对系统频率特性的分析来分析和设计控制系统的性能。,一、频率特性的定义,二、频率特性的几何表示法,第五章频率分析法,系统结构图如图:,一频率特性的定义,设系统传递函数为,第一节频率特性,特征方程的根,C(s)=G(s)R(s),拉氏反变换得:,系统的稳态响应为,求待定系数:,同理:,根据,系统正弦信号作用下的稳态输出是与输入同频率的正弦信号,输出与输入的幅值之比为|G(j)|,稳态输出与输入间的相位差为G(j)。,系统输入输出曲线,A,定义频率特性为:,幅频特性:,相频特性:,频率特性表征了系统输入输出之间的关系,故可由频率特性来分析系统性能。,第一节频率特性,例求图所示RC电路的频率特性,并求该电路正弦信号作用下的稳态输出响应。,解:,传递函数为,T=RC,频率特性,电路的稳态输出:,幅频特性和相频特性,第一节频率特性,RC电路的频率特性曲线,频率特性可表示为:,第一节频率特性,0,Re,Im,=0,二频率特性的几何表示法,频域分析法是一种图解分析法,常见的频率特性曲线有以下两种。,1幅相频率特性曲线,幅相频率特性曲线又称奈魁斯特曲线,幅相频率特性曲线,也称极坐标图,第一节频率特性,-20dB/dec,-40dB/dec,-20dB/dec,1,10,0.1,2对数频率特性曲线,对数频率特性曲线又称伯德图.,对数幅频特性,十倍频程,纵坐标表示为:,横坐标表示为:,-1,0,1,dec,为方便只表示,单位为dB,斜率,对数相频特性,第一节频率特性,第一节频率特性,1、纵坐标是以幅值对数分贝数刻度的,是均匀的;横坐标按频率对数标尺刻度,但标出的是实际的值,是不均匀的。这种坐标系称为半对数坐标系。2、在横轴上,对应于频率每增大10倍的范围,称为十倍频程(dec),如1-10,5-50,而轴上所有十倍频程的长度都是相等的。3、为了说明对数幅频特性的特点,引进斜率的概念,即横坐标每变化十倍频程(即变化)所对应的纵坐标分贝数的变化量。,注意,3对数幅相曲线,第一节频率特性,对数幅相曲线又称尼科尔斯曲线或尼科尔斯图。其特点是纵坐标为,单位为分贝(dB),横坐标为,单位为度,均为线性分度,频率为参变量。下图为RC网络时的尼科尔斯曲线。,第五章频率分析法,第二节典型环节与系统频率特性,频率特性法是一种图解分析法,它是通过系统的频率特性来分析系统的性能,因而可避免繁杂的求解运算。与其他方法比较,它具有一些明显的优点.,一、典型环节及其频率特性,二、控制系统开环频率特性,三、传递函数的频域实验确定,第二节典型环节与系统的频率特性,一、典型环节及其频率特性,1典型环节,(1)最小相位系统环节,1)比例环节,2)惯性环节,3)一阶微分环节,4)振荡环节,5)二阶微分环节,6)积分环节,7)微分环节,第二节典型环节与系统的频率特性,(2)非最小相位系统环节,1)比例环节,2)惯性环节,3)一阶微分环节,4)振荡环节,5)二阶微分环节,除了比例环节外,非最小相位环节和与之相对应的最小相位环节的区别在于开环零极点的位置。,由于开环传递函数的分子分母多项式的系数皆为实数,可以将其分解成若干典型环节的串联形式,即,第二节典型环节与系统的频率特性,设典型环节的频率特性为,则系统开环频率特性为,系统开环对数幅频特性为,结论:系统开环频率特性表现为组成开环系统的诸典型环节频率特性的合成;而系统开环对数频率特性,则表现为诸典型环节对数频率特性的叠加这一更为简单的形式。,2.典型环节的频率特性,1)比例环节,0,K,Re,Im,(1)奈氏图,G(s)=K,第二节典型环节与系统的频率特性,(2)伯德图,对数幅频特性:,=20lgK,20lgK,0,对数相频特性:,=0o,2)积分环节,(1)奈氏图,Re,Im,0,=0,(2)伯德图,对数幅频特性:,对数相频特性:,-20dB/dec,=1,=0dB,=0.1,=20dB,第二节典型环节与系统的频率特性,3)微分环节,(1)奈氏图,G(s)=s,Re,Im,0,=0,(2)伯德图,对数幅频特性:,对数相频特性:,20dB/dec,=1,=0dB,=0.1,=-20dB,第二节典型环节与系统的频率特性,4)惯性环节,(1)奈氏图,根据幅频特性和相频特性求出特殊点,然后将它们平滑连接起来。,取特殊点:,=0,=,绘制奈氏图近似方法:,Re,Im,0,=0,1,0.707,可以证明:,惯性环节的奈氏图是以(1/2,jo)为圆心,以1/2为半径的半圆。,第二节典型环节与系统的频率特性,(2)伯德图,对数幅频特性:,转折频率,-20dB/dec,=0dB,1/T频段,可用-20dB/dec渐近线近似代替,两渐近线相交点的为转折频率=1/T。,渐近线,渐近线,渐近线产生的最大误差值为:,精确曲线为,精确曲线,相频特性曲线:,=0,第二节典型环节与系统的频率特性,5)一阶微分环节,G(s)=1+Ts,(1)奈氏图,1,=0,=,Re,Im,0,=0,第二节典型环节与系统的频率特性,(2)伯德图,一阶微分环节的频率特性与惯性环节成反比,所以它们的伯德图对称于横轴。,20dB/dec,对数幅频特性:,渐近线,相频特性曲线:,=0,第二节典型环节与系统的频率特性,6)振荡环节,(1)奈氏图,1,=0,Re,Im,0,=,=0,=n,将特殊点平滑连接起来,可得近似幅相频率特性曲线。,=0.4,幅相频率特性曲线因值的不同而异。,=0.6,=0.8,第二节典型环节与系统的频率特性,(2)伯德图,对数幅频特性:,=0dB,精确曲线与渐近线之间存在的误差与值有关,较小,幅值出现了峰值。,可求得,谐振频率,谐振峰值,精确曲线,=0.1,=0.3,=0.5,相频特性曲线:,=0,=,不同,相频特性曲线的形状有所不同:,=0.1,=0.,=0.,-40dB/dec,=0.7,第二节典型环节与系统的频率特性,第二节典型环节与系统的频率特性,因为实际对数幅频曲线与阻尼比有关,误差曲线,为一曲线簇,如下图,据此修正渐进曲线而获得准确曲线。,第二节典型环节与系统的频率特性,注意:在实际分析对数幅频渐进特性曲线时,常用的半对数坐标系中的直线方程为:,其中,和,为直线上的两点,,为直线斜率。,7)时滞环节,奈氏图是一单位圆,(1)奈氏图,1,=0,Re,Im,0,=0,=,(2)伯德图,=0dB,第二节典型环节与系统的频率特性,8非最小相位环节,最小相位环节:,最小相位环节对数幅频特性与对数相频特性之间存在着唯一的对应关系。对非最小相位环节来说,不存在这种关系。,开环传递函数中没有s右半平面上的极点和零点。,开环传递函数中含有s右半平面上的极点或零点。,非最小相位环节:,第二节典型环节与系统的频率特性,第二节典型环节与系统的频率特性,注意,(1)、非最小相位环节与对应的最小相位环节,最小相位惯性环节和非最小相位惯性环节,幅频特性相同,相频特性符号相反,幅相曲线关于实轴对称;对数幅频曲线相同,对数相频曲线关于00线对称。以上特点对于振荡环节和非最小相位振荡环节、一阶微分环节和非最小相位一阶微分环节、二阶微分环节和非最小相位二阶微分环节均适用。,(2)传递函数互为倒数的典型环节,第二节典型环节与系统的频率特性,传递函数互为倒数的典型环节,对数幅频曲线关于0dB线对称,对数相频曲线关于00线对称。对于传递函数互为倒数非最小相位典型环节,其对数频率特性曲线的对称性同样成立。,注意,0o,K,转折频率,转折频率,转折频率,-90o,-180o,0o-90o,0o90o,0o-180o,比例,积分,重积分,惯性,比例微分,振荡,常用典型环节伯德图特征表,0,0,-20,-20,-40,0,20,0,-40,第二节典型环节与系统的频率特性,二、控制系统开环频率特性,频率特性法的最大特点是根据系统的开环频率特性曲线分析系统的闭环性能,这样可以简化分析过程。所以绘制系统的开环频率特性曲线就显得尤为重要。下面介绍开环系统的幅相频率特性曲线和对数频率特性曲线的绘制。,第二节典型环节与系统的频率特性,1系统开环幅相频率特性曲线,系统开环传递函数一般是由典型环节串联而成的:,积分环节的个数,时间常数,系统的阶次,开环增益,nm,幅频特性:,相频特性:,近似绘制系统的奈氏图:先把特殊点找出来,然后用平滑曲线将它们连接起来。,第二节典型环节与系统的频率特性,第二节典型环节与系统的频率特性,绘制概略开环幅相曲线的方法。反映开环频率特性的三个重要因素:,(1)确定开环幅相曲线的起点,和终点,(2)确定开环幅相曲线与实轴的交点,或,为穿越频率,开环幅相曲线曲线与实轴交点为,(3)开环幅相曲线的变化范围(象限和单调性)。,(1)0型系统,=0,特殊点:,系统起点和终点,K,=0,n-m=2,n-m=1,n-m=3,Re,Im,0,=0,=,=0,=,幅频和相频特性:,第二节典型环节与系统的频率特性,(2)型系统,=1,系统起点和终点,n-m=2,n-m=1,n-m=3,=,Re,Im,0,=0,=,幅频和相频特性:,=1,特殊点:,=0,第二节典型环节与系统的频率特性,(3)II型系统,=2,n-m=2,n-m=1,n-m=3,系统起点和终点,=0,=,幅频和相频特性:,Re,Im,0,=0,=,=2,特殊点:,第二节典型环节与系统的频率特性,开环系统奈氏曲线起点和终点的综合情况如图:,=1,=0,=3,=2,奈氏曲线的起点,奈氏曲线的终点,n-m=2,n-m=1,n-m=3,Re,Im,0,Re,Im,0,=,第二节典型环节与系统的频率特性,例1试绘制系统的奈氏图,系统的奈氏图,解:,n-m=2,I型系统,特殊点:,=0,=,Re,Im,0,=0,=,第二节典型环节与系统的频率特性,例2已知系统的开环传递函数,试画出该系统的开环幅相特性曲线。,解:,1)T,=0,0,=,K,0型,n=m,Re,Im,0,=0,=,1)0,=,K,=0,=,第二节典型环节与系统的频率特性,第二节典型环节与系统的频率特性,例3某0型单位负反馈系统开环传递函数为试概略绘制系统开环幅相曲线。解:由于惯性环节的角度变化为-900,故该系统开环幅相曲线中起点为:终点为:系统开环频率特性,令,得,即系统开环幅相曲线除在处外与实轴无交点。由于、可正可负,故系统幅相曲线在第和第象限内变化,系统概略开环幅相曲线如左图所示。若取,由于非最小相位比例环节的相角恒为,故此时系统概略开环幅相曲线由原曲线绕原点顺时针旋转而得。,第二节典型环节与系统的频率特性,例4设系统开环传递函数为试绘制系统概略开环幅相曲线。解系统开环频率特性,第二节典型环节与系统的频率特性,幅值变化:相角变化:所以的变化为。,第二节典型环节与系统的频率特性,乃氏图的起点:与实轴的交点:令,得,于是系统开环幅相曲线如下张图中曲线所示,图中虚线为开环幅相曲线的低频渐近线。,第二节典型环节与系统的频率特性,例5已知系统开环传递函数为试概略绘制系统开环幅相曲线。解系统开环频率特性为起点:终点:与实轴的交点:,第二节典型环节与系统的频率特性,因为从单调减至,故幅相曲线在第第象限与第象限间变化。开环概略幅相曲线如图所示。,第二节典型环节与系统的频率特性,例6设系统开环传递函数为试绘制系统开环概略幅相曲线。解:开环幅相曲线的起点:终点:由开环频率特性表达式知的虚部不为零,故与实轴无交点。,第二节典型环节与系统的频率特性,注意到开环系统含有等幅振荡环节,当趋于时,趋于无穷大,而相频特性取在的附近,相角突变,幅相曲线在处呈现不连续现象。作系统开环概略幅相曲线如图所示。,第二节典型环节与系统的频率特性,第二节典型环节与系统的频率特性,绘制开环概略幅相曲线的规律:1)开环幅相曲线的起点,取决于比例环节K和系统积分或微分环节的个数(系统型别)。,起点为原点;,起点为实轴上的点K处;,设,则时为的无穷远处,时为的无穷远处。2)开环幅相曲线的终点,取决于开环传递函数分子、分母多项式中最小相位环节和非最小相位环节的阶次和。,第二节典型环节与系统的频率特性,3)若开环系统存在等幅振荡环节,重数为正整数,即开环传递函具有下述形式不含的极点,则当趋于时,趋于无穷,而即在附近,相角突变。,2系统开环对数频率特性,系统的开环传递函数一般由典型环节串联而成:,开环系统的频率特性:,G(s)=G1(s)G2(s)G3(s)Gn(s),对数幅频特性:,对数相频特性:,将各环节的对数频率特性曲线相加,即为开环系统的对数频率特性曲线。,第二节典型环节与系统的频率特性,绘制系统开环对数频率特性曲线的一般步骤:,1)将开环传递函数化成典型环节的乘积。,3)将各环节的对数幅频、相频曲线相加。,2)画出各典型环节的对数幅频和对数相频特性曲线;,第二节典型环节与系统的频率特性,例已知开环传递函数,试画出系统的开环对数频率特性曲线。,解:,画出各环节的对数频率特性曲线,G1(s)=10,-20dBdec,3,1,4,2,L1,L3,L2,L4,1,10,0.5,-40dB/dec,G3(s)=0.1s+1,各环节曲线相加,即为开环系统的对数频率特性曲线。,-20dB/dec,可知:,低频段幅频特性可近似表示为:,低频段曲线的斜率,低频段曲线的高度,L(1)=20lgK,第二节典型环节与系统的频率特性,根据对数幅频特性曲线的低频段和各转折频率即可确定系统的对数频率特性曲线。,实际的作图过程可简化为:,1)将开环传递函数标准化;,2)在坐标中标出各环节的转折频率;,3)过=1,L()=20lgK这点,作斜率为-20dB/dec的低频渐近线;,4)每到某一环节的转折频率处,根据该环节的特性改变一次渐近线的斜率。,5)画出对数相频特性的近似曲线。,第二节典型环节与系统的频率特性,例试画出系统的伯德图,解:,将式子标准化,各转折频率为:,1,-20dB/dec,20,2,-40dB/dec,-20dB/dec,-40dB/dec,低频段曲线:,20lgK=20lg10=20dB,相频特性曲线:,=0,=,第二节典型环节与系统的频率特性,三、传递函数的频域实验确定,频率特性具有明确的物理意义,可用实验的方法来确定它.这对于难以列写其微分方程的元件或系统来说,具有很重要的实际意义。,1、用实验法确定系统的伯德图,2、根据伯德图确定传递函数,第二节典型环节与系统的频率特性,1、用实验法确定系统的伯德图,给系统加不同频率的正弦信号,测量出系统的对数幅频特性和相频特性曲线。,2.用标准斜率的直线近似被测对数幅频特性曲线,得曲线的渐近线。,2,-20dB/dec,10,-40dB/dec,-60dB/dec,第二节典型环节与系统的频率特性,2、根据伯德图确定传递函数,系统传递函数的一般表达式为:,根据伯得图确定传递函数主要是确定增益K,转折频率及相应的时间常数等参数则可从图上直接确定。,第二节典型环节与系统的频率特性,1.=0,低频渐近线为,系统的伯德图:,20lgK,-40dB/dec,0,-20dB/dec,=20lgK=,即,第二节典型环节与系统的频率特性,0,1,-20dB/dec,-40dB/dec,低频段的曲线与横轴相交点的频率为:,2.=1,20lgK,=1,系统的伯德图:,因为,故,第二节典型环节与系统的频率特性,-20dB/dec,-40dB/dec,-40dB/dec,1,3.=2,系统的伯德图:,=1,20lgK,低频段的曲线与横轴相交点的频率为:,因为,故,0,第二节典型环节与系统的频率特性,例由实测数据作出系统的伯德图如图所示,试求系统的传递函数。,0.5,-20dB/dec,-40dB/dec,-60dB/dec,2,3dB,解:,由图可得:,20lgMr=3dB,Mr=1.41,得:,根据,得,由频率曲线得,s2,10,G(s)=,(0.25s2+0.38s+1),(2s+1),第二节典型环节与系统的频率特性,例已知采用积分控制液位系统的结构和对数频率特性曲线,试求系统的传递函数。,解:,将测得的对数曲线近似成渐近线:,1,-20dB/dec,4,-40dB/dec,(s)=,1,(s+1),(0.25s+1),第二节典型环节与系统的频率特性,第三节频率域稳定判据,第五章线性系统的频域分析法,1932年,乃奎斯特(Nyquist)提出了另一种判定闭环系统稳定性的方法,称为乃奎斯特稳定判据,简称乃氏判据。这个判据的主要特点是利用开环频率特性判定闭环系统的稳定性。此外,乃氏稳定判据还能够指出稳定的程度,揭示改善系统稳定性的方法。因此,乃氏稳定判据在频率域控制理论中有着重要的地位。,第三节频率域稳定判据,一、奈氏判据的数学基础,1、辐角原理,设有一复变函数为,式中,s+j为复变量,F(s)为复变函数,记F(s)=U+jV。,如果在s平面画一条封闭曲线,并使其不通过F(s)的任一零、极点,则在F(s)平面上必有一条对应的映射曲线,如图所示。,图:s平面与F(s)平面的映射关系,第三节频率域稳定判据,第三节频率域稳定判据,若在s平面上的封闭曲线是沿着顺时针方向运动的,则在F(s)平面上的映射曲线的运动方向可能是顺时针的,也可能是逆时针的,这取决于F(s)函数的特性。我们感兴趣的不是映射曲线的形状,而是它包围坐标原点的次数和运动方向,因为这两者与系统的稳定性密切相关。,根据式(1),复变函数F(s)的相角可表示为,假定在s平面上的封闭曲线包围了F(s)的一个零点z1,而其他零极点都位于封闭曲线之外,则当s沿着s平面上的封闭曲线顺时针方向移动一周时,向量(s-z1)的相角变化-2弧度,而其他各相量的相角变化为零。这意味着在F(s)平面上的映射曲线沿顺时针方向围绕着原点旋转一周,也就是向量F(s)的相角变化了-2弧度,如图所示。若s平面上的封闭曲线包围着F(s)的Z个零点,则在F(s)平面上的映射曲线将按顺时针方向围绕着坐标原点旋转Z周。,第三节频率域稳定判据,第三节频率域稳定判据,图:封闭曲线包围z1时的映射情况,同理:若s平面上的封闭曲线包围了F(s)的P个极点,则当s沿着s平面上的封闭曲线顺时针移动一周时,在F(s)平面上的映射曲线将按逆时针方向围绕着原点旋转P周。,幅角原理,设s平面上的封闭曲线包围了复变函数F(s)的P个极点和Z个零点,并且此曲线不经过F(s)的任一零点和极点,则当复变量s沿封闭曲线顺时针方向移动一周时,在F(s)平面上的映射曲线按逆时针方向包围坐标原点(P-Z)周。,第三节频率域稳定判据,第三节频率域稳定判据,2、复变函数F(s)的选择,设系统的开环传递函数为,mn,则系统的特征方程为,结论:*(1)辅助函数的零点是闭环传递函数的极点辅助函数的极点是开环传递函数的极点(2)辅助函数的零、极点个数相同(3)F(s)与G(s)H(s)在复平面上的几何关系,第三节频率域稳定判据,为了判断闭环系统的稳定性,需要检验F(s)是否有位于s平面右半部的零点。为此可以选择一条包围整个s平面右半部的按顺时针方向运动的封闭曲线,通常称为奈奎斯特回线,简称奈氏回线,如图所示。,3、s平面闭合曲线的选择,图奈氏回线,第三节频率域稳定判据,可取下图所示的两种形式,图:G(s)H(s)无虚轴上的极点,图:G(s)H(s)无虚轴上的极点,第三节频率域稳定判据,4、G(s)H(s)闭合曲线的绘制,1)若G(s)H(s)无虚轴上极点,在,时,对应开环幅相曲线;,在,时,对应原点,或,点,,,为系统开环根轨迹增益。,2)若G(s)H(s)有虚轴极点。当开环系统含有积分环节时,,第三节频率域稳定判据,在原点附近,闭合曲线为,,且有,故:,对应的曲线为从,点起,半径为,、圆心角为,的圆弧,即可从点,圆心角为,的圆弧,如图5-31(a)中虚线所示。,起时针作半径无穷大、,第三节频率域稳定判据,第三节频率域稳定判据,当开环系统含有等幅振荡环节时,设,上述分析表明,半闭合曲线,由开环幅相曲线和根据开环,虚轴极点所补作的无穷大半径的虚线圆弧两部分组成。,第三节频率域稳定判据,5)、闭合曲线包围原点圈数R的计算,根据半闭合曲线,可获得,包围原点的圈数R。设,N为,穿越,点左侧负实轴的次数,,表示正穿,越的次数和(从上向下穿越),,表示负穿越的次数和(从,下向上穿越),则,第三节频率域稳定判据,(图a),(图b),(图c),(图d),(图e),二、奈氏判据,第三节频率域稳定判据,如果在s平面上,s沿着奈氏回线顺时针方向移动一周时,在F(s)平面上的映射曲线F围绕坐标原点按逆时针方向旋转圈数R=P-Z=0周(P为开环传函位于s平面右半部极点的个数,Z为闭环极点个数)时,则系统是稳定的。,根据系统闭环特征方程:G(s)H(s)=F(s)-1,F(s)的映射曲线F围绕原点运动的情况,相当于系统开环传函G(s)H(s)的封闭曲线GH围绕着(1,j0)点的运动情况,结论:闭环系统稳定的充要条件是Z=P-R=0,即R=P。即:GH逆时针包围(-1,j0)点的圈数=右半s平面开环极点数。,第三节频率域稳定判据,例58已知单位反馈系统开环幅相曲线如图所示,试确定系统闭环稳定时K值的范围。解:如图所示,开环幅相曲线与负实轴有三个交点,设交点处穿越频率分别为,,第三节频率域稳定判据,系统开环传函,由题设条件,知,和,当取,时,若令,,可得对应的K值,对应地,分别取和时,开环幅相曲线分别如图所示,图中按补作虚圆弧得半闭合曲线。,第三节频率域稳定判据,根据曲线计算包围次数,并判断系统闭环稳定性:闭环系统稳定;闭环系统不稳定;闭环系统稳定;闭环系统不稳定。综上可得,系统闭环稳定时的K值范围为和。当K等于和20时,穿过临界点,且在这三个值的邻域,系统闭环稳定或不稳定,因此系统闭环临界稳定。,第三节频率域稳定判据,第三节频率域稳定判据,三、对数频率稳定判据,可以推广运用奈氏判据,其关键问题是需要根据半对数,坐标下的,曲线确定穿越次数,或,和,开环幅相曲线和开环系统存在积分环节和等幅振荡环节时,所补作的半径为无穷大的虚圆弧。,的确定取决于,穿越负实轴的次数,建立如下对应关系:,时,(1)穿越点确定,设,时,为截止频率。,称,第三节频率域稳定判据,对于复平面的负实轴和开环对数相频特性,当取频率为,穿越频率,时,第三节频率域稳定判据,(2),确定,1)开环系统无虚轴上极点时,,等于,曲线。,2)开环系统存在积分环节,时,复数平面的,曲线,需从,的开环幅相曲线的对应点,起,逆时针补作,半径为无穷大的虚圆弧。对应地,,需从对数相频特性曲线,较小且,的点处向上补作,的虚直线,,曲线和补作的虚直线构成,3)开环系统存在等幅振荡环节,时,,复数平面的曲线,,需从,的开环幅相曲线的对,应点,起,逆时针补作,径为无穷,大的虚圆弧至,的对应点,处。,第三节频率域稳定判据,对应地,需从对数相频特性曲线,点起向上补作,的虚直线至,处,,曲线和补作的虚直线,构成,(3)穿越次数计算,正穿越,负穿越,半次正穿越,半次负穿越,第三节频率域稳定判据,对数频率稳定判据设P为开环系统正实部的极点数,,反馈控制系统稳定的充分必要条件是,和时,曲线穿越线的次数,满足,对数频率稳定判据和奈氏判据本质相同,其区别仅在,于前者在的频率范围内依曲线确定穿,越次数N。,第三节频率域稳定判据,已知系统开环传递函数试用对数判据判别闭环稳定性。,第三节频率域稳定判据,解:绘制系统开环对数频率特性如图。,由开环传递函数可知P=0。,所以闭环稳定,第三节频率域稳定判据,已知系统开环传递函数试用对数判据判别闭环稳定性。,第三节频率域稳定判据,解:绘制系统开环对数频率特性如图,在处振荡环节的对数幅频值为,闭环特征方程的正根数为,第三节频率域稳定判据,第三节频率域稳定判据,四、条件稳定系统通过前面例子分析可知,若开环传递函数在开右半s平面的极点数P0,当开环传递函数的某些系数(如开环增益)改变时,闭环系统的稳定性将发生变化。这种闭环稳定有条件的系统,称为条件稳定系统。相应地,无论开环传递函数的系数怎样化,系统总是不稳定的,这样的系统称为结构不稳定系统。,第五章线性系统的频域分析法,第四节、稳定裕度衡量闭环系统稳定程度的指标。,一、相角裕度,系统开环频率特性上幅值为1时所对应的角频率称,幅值穿越频率或截止频率,记为,,即,定义相位裕度为,相角裕度的含义是,对于闭环稳定系统,如果系统开环相频特性再滞后度,则系统将处于临界稳定状态。,第四节稳定裕度,二、幅值裕度,系统开环频率特性上相位等于-1800时所对应的角,频率称为相位穿越频率,记为,,即,定义幅值裕度为,幅值裕度的含义是,,对于闭环稳定系统,如果系统,开环幅频特性再增大h倍则系统将处于临界稳定状态。,对数坐标下,幅值裕度按下式定义:,第四节稳定裕度,相角裕度,幅值裕度,第四节稳定裕度,例512已知单位反馈系统,解:,可得,K=4时,设K分别为4和10时,试确定系统的稳定裕度。,第四节稳定裕度,K=10时,分别作出K=4和K=10的开环幅相曲线即闭合曲线,如图所示。,由奈氏判据可知:,K=4时,系统闭环稳定,,K=10时,系统闭环不稳定,,系统开环福相曲线,第四节稳定裕度,例514单位反馈系统的开环传递函数为试确定系统开环增益K5和K20时的相位裕度和幅值裕度。解:由系统开环传递函数知,转折频率为,。按分段区间描述方法,写出对数幅频渐近特性曲线的表达式为,第四节稳定裕度,本例的伯德图如左。,第五节频率特性与系统性能的关系,一、开环频率特性与系统性能的关系,二、闭环频率特性与时域指标的关系,第五章频率特性法,常将开环频率特性分成低、中、高三个频段。,一、开环频率特性与系统性能的关系,-40dB/dec,-40dB/dec,-20dB/dec,低频段,高频段,中频段,0,第四节频率特性与系统性能的关系,三个频段分别与系统性能有对应关系,下面具体讨论。,1低频段,低频段由积分环节和比例环节构成:,对数幅频特性为:,0,K,=0,=1,=2,根据分析可得如图所示的结果:,可知:,曲线位置越高,K值越大;低频段斜率越负,积分环节数越多。系统稳态性能越好。,第四节频率特性与系统性能的关系,2.中频段,穿越频率c附近的区段为中频段。它反映了系统动态响应的平稳性和快速性。,(1)穿越频率c与动态性能的关系,可近似认为整个曲线是一条斜率为-20dB/dec的直线。,设系统如图:,-20dB/dec,开环传递函数:,闭环传递函数为:,ts3T,穿越频率c反映了系统响应的快速性。,第四节频率特性与系统性能的关系,(2)中频段的斜率与动态性能的关系,设系统如图:,-40dB/dec,开环传递函数:,闭环传递函数为:,处于临界稳定状态,中频段斜率为-40dB/dec,所占频率区间不能过宽,否则系统平稳性难以满足要求。通常,取中频段斜率为-20dB/dec。,可近似认为整个曲线是一条斜率为-40dB/dec的直线。,第四节频率特性与系统性能的关系,例试分析中频段与相对稳定性的关系。,1,-20dB/dec,0,2,-40dB/dec,3,-40dB/dec,(1)曲线如图,对应的频率特性:,=72o54o,设:,可求得:,1,1,-20dB/dec,1,第四节频率特性与系统性能的关系,1,-20dB/dec,2,-60dB/dec,3,-20dB/dec,(2)曲线如图,-40dB/dec,对应的频率特性:,同样的方法可得:,=72o36o,第四节频率特性与系统性能的关系,(3)曲线如图,1,-20dB/dec,0,2,-60dB/dec,-40dB/dec,对应的频率特性:,同样的方法可得:,=18o-18o,上述计算表明,中频段的斜率反映了系统的平稳性。,第四节频率特性与系统性能的关系,3高频段,高频段反映了系统对高频干扰信号的抑制能力。高频段的分贝值越低,系统的抗干扰能力越强。高频段对应系统的小时间常数,对系统动态性能影响不大。,一般,即,第四节频率特性与系统性能的关系,4二阶系统开环频率特性与动态性能的关系,开环传递函数:,-20dB/dec,-40dB/dec,平稳性:,%,快速性:,ts,第四节频率特性与系统性能的关系,(1)相位裕量和超调量%之间的关系,得,00.707近似为,%,%,越大,%越小;反之亦然。,与、%之间的关系曲线,第四节频率特性与系统性能的关系,根据:,调节时间ts与c以及有关。不变时,穿越频率c越大,调节时间越短。,得,得,再根据:,第四节频率特性与系统性能的关系,例分析随动系统的性能,求出系统的频域指标c、和时域指标%、ts。,解:,(1)随动系统结构如图,-20dB/dec,-40dB/dec,2,可得:,=180o-90o-tg-1(0.56.3),=90o-72.38o=17.62o,=/100=0.176,=3s,=57%,=6.5,第四节频率特性与系统性能的关系,加入比例微分环节,1)=0.01,解:,-20dB/dec,-40dB/dec,2,100,-20dB/dec,可得,=180o-90o-tg-1(0.56.3),+tg-1(0.016.3),=21.22o,=/100=0.21,=6.59,%=51%,ts=2.4s,另外,所以,第四节频率特性与系统性能的关系,2)=0.2,-40dB/dec,2,5,-20dB/dec,-20dB/dec,=180o-90o-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计单位工程质量检查报告
- 2025购销合同标准范本
- 3人合作协议合同样本
- 公司制作合同标准文本
- 河道清淤专项施工方案
- 监理公司绩效考核管理办法
- 员工绩效考核管理办法
- 交通安全记心中主题班会教案
- 新文化运动参考教案
- 防触电安全教育教案
- 2025年(广东省协会 )房屋安全检测鉴定技术培训-机考历年真题考前冲刺题
- 上海海洋大学《微生物学》2023-2024学年第二学期期末试卷
- 法院调解以物抵债协议范文5篇
- Unit 4 Healthy food Part A Let's learn(课件)-2024-2025学年人教PEP版英语三年级下册
- 2025年美丽中国第六届全国国家版图知识竞赛题库及答案(中小学组)
- 2025年热电厂面试题及答案
- 二零二五年度研学旅行基地运营管理合同协议
- 2025重庆市安全员B证考试题库附答案
- 山东烟台历年中考语文文言文阅读试题22篇(含答案与翻译)(截至2023年)
- 入团申请书纸
- 机器学习(完整版课件)
评论
0/150
提交评论