2018_2019学年高中数学第2章圆锥曲线与方程2.62.6.2求曲线的方程学案苏教版.docx_第1页
2018_2019学年高中数学第2章圆锥曲线与方程2.62.6.2求曲线的方程学案苏教版.docx_第2页
2018_2019学年高中数学第2章圆锥曲线与方程2.62.6.2求曲线的方程学案苏教版.docx_第3页
2018_2019学年高中数学第2章圆锥曲线与方程2.62.6.2求曲线的方程学案苏教版.docx_第4页
2018_2019学年高中数学第2章圆锥曲线与方程2.62.6.2求曲线的方程学案苏教版.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.6.2求曲线的方程学习目标:1.了解求曲线方程的步骤,会求一些简单曲线的方程(重点)2.掌握求动点轨迹方程的常用方法(难点)3.对动点轨迹方程的限制与检验(易错点)自 主 预 习探 新 知教材整理求曲线的方程阅读教材P63例1以上的部分,完成下列问题1求曲线方程的一般步骤求曲线方程的一般步骤为五步用流程图表示如下:求曲线方程的流程图可以简记为:2求曲线方程的常用方法求曲线方程的常用方法有直接法、代入法、参数法、几何法、定义法1判断(正确的打“”,错误的打“”)(1)在求曲线方程时,对于同一条曲线,坐标系的建立不同,所得到的曲线方程也不一样()(2)化简方程“|x|y|”为“yx”是恒等变形()(3)按照求曲线方程的步骤求解出的曲线方程不用检验()(4)在求曲线方程时,如果点有了坐标或曲线有了方程,则说明已经建立了平面直角坐标系()答案(1)(2)(3)(4)2在平面直角坐标系内,到原点距离为2的点M的轨迹方程是_解析由圆的定义知,点M的轨迹是以(0,0)为圆心,以2为半径的圆,则其方程为x2y24.答案x2y243设P为曲线y21上一动点,O为坐标原点,M为线段OP的中点,则动点M的轨迹方程是_解析设M(x,y),P(x0,y0),则x02x,y02y,y1,x24y21.答案x24y214到A(3,0),B(5,1)的距离相等的点的轨迹方程是_. 【导学号:71392127】解析设P(x,y),PAPB,即,即(x3)2y2(x5)2(y1)2,化简得16x2y170.答案16x2y170合 作 探 究攻 重 难直接法求轨迹方程在ABC中,角A,B,C所对的边分别为a,b,c,acb,且a,c,b成等差数列,AB2,求顶点C的轨迹方程精彩点拨由a,c,b成等差数列可得ab2c;由acb可知所求轨迹方程是整个轨迹方程的一部分;由AB2可建立适当的坐标系于是可按求曲线方程的一般步骤求解自主解答以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系,则A(1,0),B(1,0),设C点坐标为(x,y),由已知得ACBC2AB.即4,整理化简得3x24y2120,即1.又acb,x0且x2.所以顶点C的轨迹方程为1(xcb且a,c,b成等差数列”改为“ABC的周长为6且AB2”,求顶点C的轨迹方程. 【导学号:71392128】解以AB所在直线为x轴,AB的垂直平分线为y轴,建立如图所示的平面直角坐标系则A(1,0),B(1,0),设C(x,y),由已知得ACBCAB6.即4.化简整理得3x24y2120,即1.A,B,C三点不能共线,x2.综上,点C的轨迹方程为1(x2).定义法求曲线方程已知圆A:(x2)2y21与定直线l:x1,且动圆P和圆A外切并与直线l相切,求动圆的圆心P的轨迹方程精彩点拨利用平面几何的知识,分析点P满足的条件为抛物线,可用定义法求解自主解答如图,作PK垂直于直线x1,垂足为K,PQ垂直于直线x2,垂足为Q,则KQ1,所以PQr1,又APr1,所以APPQ,故点P到圆心A(2,0)的距离和到定直线x2的距离相等,所以点P的轨迹为抛物线,A(2,0)为焦点,直线x2为准线设抛物线方程为y22px(p0)则2,p4,点P的轨迹方程为y28x.名师指津若动点运动的几何条件满足某种已知曲线的定义,可以设出其标准方程,然后用待定系数法求解,这种求轨迹的方法称为定义法,利用定义法求轨迹要善于抓住曲线的定义的特征.再练一题2点P与定点F(2,0)的距离和它到定直线x8的距离的比是12,求点P的轨迹方程,并说明轨迹是什么图形解设d是点P到直线x8的距离,根据题意,得.由圆锥曲线的统一定义可知,点P的轨迹是以F(2,0)为焦点,x8为准线的椭圆,设椭圆的方程为1(ab0),焦距为2c,则解得b2a2c216412.故点P的轨迹方程为1.代入法求动点的轨迹方程已知P在抛物线yx2上运动,另有一点Q(4,2),求线段PQ的中点M的轨迹方程. 【导学号:71392129】精彩点拨设M(x,y),由M为线段PQ的中点,可表示出在已知抛物线上运动的点P的坐标,代入到已知抛物线,进而得到所求动点的轨迹方程自主解答设M(x,y),P(x0,y0)由M为线段PQ的中点,得x,y,则x02x4,y02y2.因为P(x0,y0)在抛物线yx2上,即y0x,得2y2(2x4)2,化简得y2x28x9.即线段PQ的中点M的轨迹方程为y2x28x9.名师指津1动点满足的条件不方便用等式求出,但动点随着另一个动点(相关点)而运动时,可以用动点坐标表示相关点的坐标,根据相关点坐标所满足的方程,即可得动点的轨迹方程,这种求轨迹方程的方法叫做相关动点法,也称代入法2代入法求动点轨迹,要设从动点坐标为(x,y),主动点坐标为(x0,y0),用x,y表示x0,y0,不要弄反代入而导致错误再练一题3在例3中,若点M满足3,则点M的轨迹方程是什么?解设P(x0,y0),则y0x,设M(x,y),则(4x0,2y0),(4x,2y),由3,得即又y0x,3y4(3x8)2,化简得y3x216x,即点M的轨迹方程为y3x216x.曲线方程的特征探究问题1在解决曲线的方程问题时,怎样建立“适当的”坐标系?提示建立坐标系时,要充分利用图形的几何特征,例如,中心对称图形,可利用它的对称中心为坐标原点;轴对称图形,可利用它的对称轴为坐标轴;题设中有直角,可考虑以两直角边所在的直线为坐标轴等同一曲线,坐标系建立的不同,方程也不相同所以要遵循垂直性和对称性的原则建系一方面让尽可能多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简捷2“轨迹方程”与“轨迹”有什么异同?提示(1)动点的轨迹方程实质上是建立轨迹上的点的坐标间的关系,即动点坐标(x,y)所适合的方程f(x,y)0.有时要在方程后根据需要指明变量的取值范围;(2)轨迹是点的集合,是曲线,是几何图形,故求点的轨迹时,除了写出方程外,还必须指出这个方程所代表的曲线的形状、位置、范围、大小等3在求动点的轨迹方程时 ,如何确定变量的取值范围?提示在求动点的轨迹方程时,注意不要把范围扩大或缩小,也就是要检验轨迹的纯粹性和完备性应充分挖掘题目中的隐含条件、限制条件,求出变量的适当范围4如何利用参数法求轨迹方程,利用参数法求轨迹方程时要注意什么?提示(1)当动点坐标x,y满足的等式关系不易直接找出时,可以设出与动点运动有关的变量作为参数,间接地表示出关于x,y的方程,然后再消去参数,为了消去参数,应根据题意找出参数满足的等式在具体问题中,往往以直线的斜率k,倾斜角,截矩b,时间t等作为参数(2)利用参数法求轨迹方程时,应注意参数的取值范围同时,参数法求动点轨迹方程的一个难点就是消参数,应选用适当的方法消去参数例如代入法、加减法、恒等式法等设椭圆方程为x21,过点M(0,1)的直线l交椭圆于A,B两点,O为坐标原点,点P满足(),当直线l绕点M旋转时,求动点P的轨迹方程. 【导学号:71392130】精彩点拨设出直线的方程,其斜率为k,运用所给条件,用k表示点P的纵、横坐标,消去k,得x,y的关系式,即动点P的轨迹方程自主解答直线l过定点M(0,1),当其斜率存在时设为k,则l的方程为ykx1.设A(x1,y1),B(x2,y2),由题意知,A,B满足方程组消去y,得(4k2)x22kx30,则4k212(4k2)0,x1x2,x1x2.设P(x,y),则由(),得消去k,得4x2y2y0;当斜率k不存在时,P是坐标原点,也满足这个方程,故P点的轨迹方程为4x2y2y0.再练一题4过原点作直线l和抛物线yx24x9交于A,B两点,求线段AB的中点M的轨迹方程解由已知,直线l的斜率一定存在,设l的方程为ykx,把它代入抛物线方程中,得x2(4k)x90.由(4k)2360,得k2或k2或k3或x3或x3)当 堂 达 标固 双 基1到两坐标轴的距离相等的点的轨迹方程是_解析设P(x,y)到两坐标轴的距离相等,则|x|y|,即yx.答案yx2已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是_解析由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30,得2xy50.答案2xy503已知两定点A(2,0),B(1,0),如果动点P满足|PA|2|PB|,则点P的轨迹所包围的图形的面积为_解析设P(x,y),由|PA|2|PB|,得2,3x23y212x0,即x2y24x0.P的轨迹是以(2,0)为圆心,半径为2的圆,即轨迹所包围的面积等于4.答案44已知定圆F1:(x5)2y21,定圆F2:(x5)2y216,动圆M与定圆F1,F2都外切,则动圆圆心M的轨迹方程为_. 【导学号:71392131】解析由圆F1的方程知圆心F1(5,0),半径r11,由圆F2的方程知圆心F2(5,0),半径r24,设动圆M的半径为R,因为圆M与圆F1,F2都外切,所以有MF1R1,MF2R4,从而有MF2MF1310F1F2,根据双曲线的意义知,点M的轨迹是以F1,F2为焦点的双曲线的左支,设双曲线方程为1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论