免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等差数列的性质【常考题型】题型一、等差数列性质的应用【例1】(1)已知an为等差数列,a3a4a5a6a7450.求a2a8的值(2)设数列an,bn都是等差数列若a1b17,a3b321,则a5b5_.(1)解a3a4a5a6a7450,由等差数列的性质知:a3a7a4a62a5.5a5450.a590.a2a82a5180.(2)解析法一:设数列an,bn的公差分别为d1,d2,因为a3b3(a12d1)(b12d2)(a1b1)2(d1d2)72(d1d2)21,所以d1d27,所以a5b5(a3b3)2(d1d2)212735.法二:数列an,bn都是等差数列,数列anbn也构成等差数列,2(a3b3)(a1b1)(a5b5)2217a5b5a5b535.答案35【类题通法】1利用通项公式时,如果只有一个等式条件,可通过消元把所有的量用同一个量表示2本题的求解主要用到了等差数列的以下性质:若mnpq,则amanapaq.对于此性质,应注意:必须是两项相加等于两项相加,否则不一定成立例如,a15a7a8,但a6a9a7a8;a1a21a22,但a1a212a11.【对点训练】1(1)已知an为等差数列,a158,a6020,则a75_.(2)如果等差数列an中,a3a4a512,那么a1a2a7()A14B21C28 D35解析:法一:因为an为等差数列,所以a15,a30,a45,a60,a75也成等差数列,其公差为d,a15为首项,则a60为其第四项,所以a60a153d,得d4.所以a75a60da7524.法二:因为a15a114d,a60a159d,所以解得故a75a174d7424.(2)a3a4a512,3a412,则a44,又a1a7a2a6a3a52a4,故a1a2a77a428.故选C.答案:(1)24(2)C题型二、灵活设元求解等差数列【例2】(1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数(2)四个数成递增等差数列,中间两数的和为2,首末两项的积为8,求这四个数解(1)设这三个数依次为ad,a,ad,则解得这三个数为4,3,2.(2)法一:设这四个数为a3d,ad,ad,a3d(公差为2d),依题意,2a2,且(a3d)(a3d)8,即a1,a29d28,d21,d1或d1.又四个数成递增等差数列,所以d0,d1,故所求的四个数为2,0,2,4.法二:若设这四个数为a,ad,a2d,a3d(公差为d),依题意,2a3d2,且a(a3d)8,把a1d代入a(a3d)8,得(1d)(1d)8,即1d28,化简得d24,所以d2或2.又四个数成递增等差数列,所以d0,所以d2,a2.故所求的四个数为2,0,2,4.【类题通法】常见设元技巧(1)某两个数是等差数列中的连续两个数且知其和,可设这两个数为:ad,ad,公差为2d;(2)三个数成等差数列且知其和,常设此三数为:ad,a,ad,公差为d;(3)四个数成等差数列且知其和,常设成a3d,ad,ad,a3d,公差为2d.【对点训练】2已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列解:设这四个数依次为a3d,ad,ad,a3d.由题设知解得或这个数列为2,5,8,11或11,8,5,2.题型三、等差数列的实际应用【例3】某公司经销一种数码产品,第1年获利200万元,从第2年起由于市场竞争等方面的原因,利润每年比上一年减少20万元,按照这一规律如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?解由题意可知,设第1年获利为a1,第n年获利为an,则anan120,(n2,nN*),每年获利构成等差数列an,且首项a1200,公差d20,所以ana1(n1)d200(n1)(20)20n220.若an0,则该公司经销这一产品将亏损,由an20n2200,解得n11,即从第12年起,该公司经销这一产品将亏损【类题通法】1在实际问题中,若涉及一组与顺序有关的数的问题,可考虑利用数列方法解决,若这组数依次成直线上升或下降,则可考虑利用等差数列方法解决2在利用数列方法解决实际问题时,一定要分清首项、项数等关键量【对点训练】3九章算术“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为()A1升B.升C.升D.升解析:选B设所构成的等差数列an的首项为a1,公差为d,则有即解得则a5a14d,故第5节的容积为升【练习反馈】1已知等差数列an,则使数列bn一定为等差数列的是()AbnanBbnaCbn Dbn解析:选A数列an是等差数列,an1and(常数)对于A:bn1bnanan1d,正确;对于B不一定正确,如数列ann,则bnan2,显然不是等差数列;对于C、D:及不一定有意义,故选A.2在等差数列an中,已知a4a816,则a2a10()A12 B.16C20 D24解析:选B因为数列an是等差数列,所以a2a10a4a816.3已知数列an中,a510,a1231,则其公差d_.解析:d3.答案:34在等差数列an中,已知a22a8a14120,则2a9a10的值为_解析:a2a142a8,a22a8a144a8120,a830.2a9a10(a8a10)a10a830.答案:305已知等差数列an中,a1a4a715,a2a4a645,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电脑棋手》课件
- 《远山如黛》少儿美术教育绘画课件创意教程教案
- 课程分享 课件
- 西南林业大学《比较文学概论》2021-2022学年第一学期期末试卷
- 西京学院《网络数据库》2021-2022学年期末试卷
- 西京学院《建筑设备》2021-2022学年第一学期期末试卷
- 2024年教师系列中高级职称评审有关政策解读附件10
- 西京学院《国际结算与贸易融资》2022-2023学年第一学期期末试卷
- 西京学院《单片机原理及应用》2022-2023学年期末试卷
- 西华师范大学《中小学综合实践活动》2023-2024学年第一学期期末试卷
- 火力发电厂施工图设计内容深度规定
- 酒店经理管理酒店运营
- AI在农业领域的应用
- 汽车eps行业国内外市场发展前景分析与投资风险预测报告
- 短视频运营实战:抖音短视频运营
- 园长进班指导制度方案及流程
- 装修垃圾清运处置方案
- JC-T 2536-2019水泥-水玻璃灌浆材料
- HG-T 20583-2020 钢制化工容器结构设计规范
- 品牌授权协议书
- 郑州人才公寓策划方案
评论
0/150
提交评论