




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考专题突破六 高考中的概率与统计问题教师用书 理 新人教版1(2017安阳月考)一射手对同一目标进行4次射击,且射击结果之间互不影响已知至少命中一次的概率为,则此射手的命中率为()A. B. C. D.答案C解析设此射手未命中目标的概率为p,则1p4,所以p,故1p.2在可行域内任取一点,其规则如程序框图所示,则能输出数对(x,y)的概率是()A. B. C. D.答案B解析依题意可行域为正方形,输出数对(x,y)形成的图形为图中阴影部分,故所求概率为P.3已知随机变量服从正态分布N(2,2),且P(4)0.8,则P(02)等于()A0.6 B0.4 C0.3 D0.2答案C解析P(4)0.2,由题意知图象的对称轴为直线x2,P(4)0.2,P(04)1P(4)0.6,P(02)P(04)0.3.4位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是()A. B. C. D.答案D解析依题意得,质点P移动五次后位于点(1,0),则这五次移动中必有某两次向左移动,另三次向右移动,因此所求的概率等于C()2()3.5.为了从甲、乙两名运动员中选拔一人参加某次运动会跳水项目,对甲、乙两名运动员进行培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得到茎叶图如图所示从平均成绩及发挥稳定性的角度考虑,你认为选派_(填甲或乙)运动员合适答案甲解析根据茎叶图,可得甲(787981849395)85,乙(758083859295)85.s(7885)2(7985)2(8185)2(8485)2(9385)2(9585)2,s(7585)2(8085)2(8385)2(8585)2(9285)2(9585)2.因为甲乙,ss,所以甲运动员的成绩比较稳定,选派甲运动员参赛比较合适.题型一古典概型与几何概型例1(1)(2016山东)在1,1上随机地取一个数k,则事件“直线ykx与圆(x5)2y29相交”发生的概率为_(2)将1,2,3,4,5五个数字任意排成一排,且要求1和2相邻,则能排成五位偶数的概率为_答案(1)(2)解析(1)由已知得,圆心(5,0)到直线ykx的距离小于半径,3,解得k,由几何概型得P.(2)五个数字任意排成一排,且1和2相邻的排列总数为AA,能够排成这样的五位偶数的个数为AAA,所求概率为.思维升华几何概型与古典概型的本质区别在于试验结果的无限性,几何概型经常涉及的几何度量有长度、面积、体积等,解决几何概型的关键是找准几何测度;古典概型是命题的重点,对于较复杂的基本事件空间,列举时要按照一定的规律进行,做到不重不漏(1)(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_(2)(2016商丘一模)如图所示,设表示的区域为M,随机往M内投一点P,则点P落在AOB内的概率是()A. B.C. D.答案(1)(2)C解析(1)基本事件共有36个列举如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个故所求概率为P.(2)抛物线yx21与两坐标轴正半轴围成的区域为M,则M的面积为(x21)dx(x3x)|,AOB的面积为,因此点P落在AOB内的概率是.题型二求离散型随机变量的均值与方差例2(2016广东东莞一中、松山湖学校联考)某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,10的十个小球活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金(1)求员工甲抽奖一次所得奖金的分布列与均值;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?解(1)由题意知甲抽奖一次,基本事件总数是C120,奖金的可能取值是0,30,60,240,P(240),P(60),P(30),P(0)1.故的分布列为03060240PE()0306024020.(2)由(1)可得乙抽奖一次中奖的概率是1,四次抽奖是相互独立的,中奖次数B(4,),D()4.思维升华离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:品牌甲乙首次出现故障时间x(年)0x11202轿车数量(辆)2345545每辆利润(万元)1231.82.9将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由解(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A,则P(A).(2)依题意得,X1的分布列为X1123PX2的分布列为X21.82.9P(3)由(2)得E(X1)1232.86,E(X2)1.82.92.79.因为E(X1)E(X2),所以应生产甲品牌轿车题型三概率与统计的综合应用例3经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示经销商为下一个销售季度购进了130 t该农产品以X(单位: t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X100,110),则取X105,且X105的概率等于需求量落入100,110)的频率),求T的均值解(1)当X100,130)时,T500X300(130X)800X39 000.当X130,150时,T50013065 000.所以T(2)由(1)知利润T不少于57 000元当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45 00053 00061 00065 000P0.10.20.30.4所以E(T)45 0000.153 0000.261 0000.365 0000.459 400.思维升华概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性(2016衡阳模拟)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),90,100后得到如图所示的频率分布直方图(1)求图中实数a的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率解(1)由已知,得10(0.0050.0100.020a0.0250.010)1,解得a0.03.(2)根据频率分布直方图,可知成绩不低于60分的频率为110(0.0050.010)0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为6400.85544.(3)易知成绩在40,50)分数段内的人数为400.052,这2人分别记为A,B;成绩在90,100分数段内的人数为400.14,这4人分别记为C,D,E,F.若从数学成绩在40,50)与90,100两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个如果2名学生的数学成绩都在40,50)分数段内或都在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在40,50)分数段内,另一个成绩在90,100分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M).题型四概率与统计案例的综合应用例4(2016湖北武汉华中师大一附中期末)某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科、理科的情况如下表所示.性别科目男女文科25理科103(1)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(2)用独立性检验的方法分析有多大的把握认为该中学的高二学生选报文理科与性别有关?参考公式:K2(其中nabcd)P(K2k0)0.100.050.010.0050.001k02.7063.8416.6357.87910.828解(1)从报考文科的2名男生,报考理科的3名女生中任取3人,有C10(种),其中全是女生的情况只有1种,3人中既有男生也有女生的概率为1.(2)K24.4323.841,可知有95%以上的把握认为该中学的高二学生选报文理科与性别有关思维升华统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的22列联表,并据此资料是否可以认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计(2)将上述调查所得到的频率视为概率现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列、均值E(X)和方差D(X)附:K2.P(K2k0)0.100.050.01k02.7063.8416.635解(1)由所给的频率分布直方图知,“体育迷”人数为100(100.020100.005)25,“非体育迷”人数为75,从而22列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表的数据代入公式计算:K23.030.因为2.7063.0303.841,所以有90%的把握认为“体育迷”与性别有关(2)由频率分布直方图知,抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.由题意,XB,从而X的分布列为X0123PE(X)np3,D(X)np(1p)3.1甲、乙两人进行两种游戏,两种游戏规则如下:游戏:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢游戏:口袋中有质地、大小完全相同的6个球,其中4个白球、2个红球,由裁判有放回地摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢(1)求游戏中甲赢的概率;(2)求游戏中乙赢的概率,并比较这两种游戏哪种游戏更公平,试说明理由解(1)游戏中有放回地依次摸出两球的基本事件有5525(个),其中甲赢有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),(2,2),(2,4),(4,4),(4,2),共13个基本事件,游戏中甲赢的概率为P.(2)设4个白球为a,b,c,d,2个红球为A,B,则游戏中有放回地依次摸出两球,基本事件有6636(个),其中乙赢有(a,A),(b,A),(c,A),(d,A),(a,B),(b,B),(c,B),(d,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),共16个基本事件,游戏中乙赢的概率为P.|,游戏更公平2某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数(1)根据茎叶图计算样本平均数;(2)日加工零件个数大于样本平均数的工人为优秀工人根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率解(1)样本平均数为22.(2)由(1)知样本中优秀工人占的比例为,故推断该车间12名工人中有124(名)优秀工人(3)设事件A:“从该车间12名工人中,任取2人,恰有1名优秀工人”,则P(A).3某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:12345678910甲11.612.213.213.914.011.513.114.511.714.3乙12.313.314.311.712.012.813.213.814.112.5(1)请画出茎叶图如果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版二年级下册第4课 漂亮的包装纸教案配套
- 九年级历史上册 第七单元 工业革命、马克思主义的诞生与反殖民斗争 第19课 马克思主义的诞生教学设计 川教版
- 2024中建港航局海洋工程研究院招聘笔试参考题库附带答案详解
- 工程建设项目流程培训
- 车载充电机国内外研究现状培训
- 人教部编版 (五四制)一年级上册语文园地二教学设计及反思
- 五年级上册心理健康教案-4《了解自己的情绪》 北师大版
- 单位新闻摄影培训大纲
- 妇产科新护士培训计划
- 计算机大一上期末复习测试附答案
- 托育服务中心项目可行性研究报告
- 春检工作安全措施(标准版)
- 2025版《南方凤凰台·5A教案·基础版·化学》导学案
- TPX6111B数显卧式铣镗床使用手册3
- 微纳尺度力学与器件
- 法莫替丁注射液-外科
- 人工智能在航空航天工程中的应用
- 【采购管理优化探究文献综述3000字】
- +山东省泰安市肥城市2023-2024学年七年级下学期期中考试英语试题+
- (高清版)WST 830-2024 外照射放射防护剂量转换系数标准
- (高清版)JTGT 5440-2018 公路隧道加固技术规范
评论
0/150
提交评论