免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学三角形综合知识点梳理 考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类.三角形(按边分)三角形(按角分) 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段三角形的中线:顶点与对边中点的连线,三条中线交点叫重心三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质 定理:三角形的内角和等于180. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。7、多边形的外角和恒为3608、多边形及多边形的对角线正多边形:各个角都相等,各条边都相等的多边形叫做正多边形凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。多边形的对角线的条数:A.从n边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。B.n 边形共有条对角线。9、边形的内角和公式及外角和多边形的内角和等于(n-2)180(n3)。多边形的外角和等于360。10、平面镶嵌及平面镶嵌的条件。平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360。考点二、全等三角形 1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60。2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。考点四、直角三角形 1、直角三角形的两个锐角互余2、在直角三角形中,30角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半 4直角三角形两直角边a,b的平方和等于斜边c的平方,即5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 CDAB 6、常用关系式由三角形面积公式可得:ABCD=ACBC经典例题解析:例1.如图,BP平分FBC,CP平分ECB,A=40求BPC的度数。 分析:可以利用三角形外角的性质及三角形的内角和求解。解:1= 例2.如图,求A+C+3+F的度数。分析:由已知B=30,G=80,BDF=130,利用四边形内角和,求出3的度数,再计算要求的值。解:四边形内角和为(4-2)180=3603=360-30-80-130=120又A C F是三角形的内角 A+C+F+3=180+120=300例3已知一个多边形的每个外角都是其相邻内角度数的,求这个多边形的边数。分析:每一个外角的度数都是其相邻内角度数的,而每个外角与其相邻的内角的度数之和为180。解:设此多边形的外角为x,则内角的度数为x 例4.用正三角形、正方形和正六边形能否进行镶嵌? 分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360 解:正三角形的内角为 正方形的内角为正六边形的内角为 可以镶嵌。一个顶点处有1个正三角形、2个正方形和1个正六边形。例5.如图,在ABC中,ACB=60,BAC=75,ADBC于D,BEAC于E,AD与BE交于H,则CHD= 解:在ABC中,三边的高交于一点,所以CFAB,BAC=75,且CFAB,ACF=15,ACB=60,BCF=45在CDH中,三内角之和为180,CHD=45,故答案为CHD=45点评:考查三角形中,三条边的高交于一点,且内角和为180例6如图,AD、AM、AH分别ABC的角平分线、中线和高(1)因为AD是ABC的角平分线,所以 = = 1/2 ;(2)因为AM是ABC的中线,所以 = = ;(3)因为AH是ABC的高,所以 = =90分析:(1)根据三角形角平分线的定义知:角平分线平分该角;(2)根据三角形的中线的定义知:中线平分该中线所在的线段;(3)根据三角形的高的定义知,高与高所在的直线垂直解答:解:(1)AD是ABC的角平分线,BAD=CAD=1/2BAC;(2)AM是ABC的中线,BM=CM=1/2BC;(3)AH是ABC的高,AHBC,AHB=AHC=90;故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC例8如图,AP平分BAC交BC于点P,ABC=90,且PB=3cm,AC=8cm,则APC的面积是 cm2解:AP平分BAC交BC于点P,ABC=90,PB=3cm,点P到AC的距离等于3,AC=8cm,APC的面积=832=12cm2例9. 已知:点P是等边ABC内的一点,BPC150,PB2,PC3,求PA的长。分析:将BAP绕点B顺时针方向旋转60至BCD,即可证得BPD为等边三角形,PCD为直角三角形。解:BCBA,将BAP绕点B顺时针方向旋转60,使BA与BC重合,得BCD,连结PD。BDBP2,PADC。BPD是等边三角形。BPD60。DPCBPCBPD1506090。DCPADC。例10. 两个全等的含30,60角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断EMC是什么样的三角形,并说明理由。分析:判断一个三角形的形状,可以结合所给出的图形作出假设,或许是等腰三角形。这样就可以转化为另一个问题:尝试去证明EMMC,要证线段相等可以寻找全等三角形来解决,然而图中没有形状大小一样的两个三角形。这时思考的问题就可以转化为这样一个新问题:如何构造一对全等三角形?根据已知点M是直角三角形斜边的中点,产生联想:直角三角形斜边上的中点是斜边的一半,得:MDMBMA。连结M A后,可以证明MDEMAC。答:EMC是等腰直角三角形。证明:连接AM,由题意得,DEAC,ADAB,DAEBAC90。DAB90。DAB为等腰直角三角形。又MDMB,MAMDMB,AMDB,MADM AB45。MDEMAC105,DMA90。MDEMAC。DMEAMC,MEMC。又DMEEMA90,AMCEMA90。MCEM。EMC是等腰直角三角形。说明:构造全等三角形是解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。构造过程中要不断地转化问题或转化思维的角度。会转化,善于转化,更能体现思维的灵活性。在问题中创设以三角板为情境也是考题的一个热点。例11.如图,等腰直角三角形ABC中,ACB90,AD为腰CB上的中线,CEAD交AB于E求证CDAEDB提示:作CFAB于F,则ACF45,在ABC中,ACB90,CEAD,于是,由ACGB45,ABAC ,且易证12,由此得AGCCEB(ASA)再由CDDB,CGBE,GCDB,又可得CGDBED(SAS),则可证CDAEDB例12.如图,ABC中,12,34,56A60求ECF、FEC的度数ABCDFGE123456略解:因为 A60,所以 23(18060)60;又因为 B、C、D是直线,所以 4590;于是 FEC2360,FCE4590,FEC60ABCDEFGH例13. 在RtABC中,A90,CE是角平分线,和高AD相交于F,作FGBC交AB于G,求证:AEBG略解:作EHBC于H,由于E是角平分线上的点,可证 AEEH ;且又由 AECBECBCADECAAFE可证 AEAF,于是由 AFEH,AFGEHB90,BAGF可得 AFGEHB;所以 AGEB,即 AEEGBGGE,所以 AEBG反馈练习1.如图,AD是ABC的中线,如果ABC的面积是18cm2,则ADC的面积是 cm22.如图,ABC中,ABC=BAC=45,点P在AB上,ADCP,BECP,垂足分别为D,E,已知DC=2,则BE= 3(2009宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F(1)则AM DM;(2)若DF=2,则菱形ABCD的周长为 4已知BD,CE是ABC的两条高,M、N分别为BC、DE的中点,勇敢猜一猜:(1)线段EM与DM的大小有什么关系?EM DM;(2)线段MN与DE的位置有什么关系? 5如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是 cm6、已知:如图,P是正方形ABCD内点,PADPDA150APCDB 求证:PBC是正三角形7、已知:P是边长为1的正方形ABCD内的一点,求PAPBPC的最小值ACBPD三角形中作辅助线的常用方法举例常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明这种作法,适合于证明线段的和、差、倍、分等类的题目特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D、E为ABC内两点,求证:ABACBDDECE.证明:(法一)将DE两边延长分别交AB、AC 于M、N,在AMN中,AMAN MDDENE;(1) 在BDM中,MBMDBD; (2) 在CEN中,CNNECE; (3) 由(1)(2)(3)得: AMANMBMDCNNEMDDENEBDCE ABACBDDEEC (法二:)如图1-2, 延长BD交 AC于F,延长CE交BF于G,在ABF和GFC和GDE中有: ABAF BDDGGF(三角形两边之和大于第三边)(1) GFFCGECE(同上)(2) DGGEDE(同上)(3) 由(1)(2)(3)得: ABAFGFFCDGGEBDDGGFGECEDE ABACBDDEEC。二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D为ABC内的任一点,求证:BDCBAC。分析:因为BDC与BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使BDC处于在外角的位置,BAC处于在内角的位置;证法一:延长BD交AC于点E,这时BDC是EDC的外角, BDCDEC,同理DECBAC,BDCBAC证法二:连接AD,并延长交BC于FBDF是ABD的外角BDFBAD,同理,CDFCADBDFCDFBADCAD即:BDCBAC。注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD为ABC的中线,且12,34,求证:BECFEF。分析:要证BECFEF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知12,34,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中。证明:在DA上截取DNDB,连接NE,NF,则DNDC,在DBE和DNE中:DBEDNE (SAS)BENE(全等三角形对应边相等)同理可得:CFNF在EFN中ENFNEF(三角形两边之和大于第三边)BECFEF。注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。例如:如图4-1:AD为ABC的中线,且12,34,求证:BECFEF证明:延长ED至M,使DM=DE,连接 CM,MF。在BDE和CDM中, BDECDM (SAS) 又12,34 (已知) 1234180(平角的定义) 32=90即:EDF90 FDMEDF 90在EDF和MDF中 EDFMDF (SAS) EFMF (全等三角形对应边相等) 在CMF中,CFCMMF(三角形两边之和大于第三边) BECFEF注:上题也可加倍FD,证法同上。注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。五、有三角形中线时,常延长加倍中线,构造全等三角形。例如:如图5-1:AD为 ABC的中线,求证:ABAC2AD。分析:要证ABAC2AD,由图想到: ABBDAD,ACCDAD,所以有ABAC BDCDADAD2AD,左边比要证结论多BDCD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。 证明:延长AD至E,使DE=AD,连接BE,则AE2AD AD为ABC的中线 (已知) BDCD (中线定义) 在ACD和EBD中 ACDEBD (SAS) BECA(全等三角形对应边相等) 在ABE中有:ABBEAE(三角形两边之和大于第三边) ABAC2AD。(常延长中线加倍,构造全等三角形)练习:已知ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF2AD。 六、截长补短法作辅助线。例如:已知如图6-1:在ABC中,ABAC,12,P为AD上任一点。求证:ABACPBPC。分析:要证:ABACPBPC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边ABAC,故可在AB上截取AN等于AC,得ABACBN, 再连接PN,则PCPN,又在PNB中,PBPNBN,即:ABACPBPC。证明:(截长法)在AB上截取ANAC连接PN , 在APN和APC中 APNAPC (SAS) PCPN (全等三角形对应边相等) 在BPN中,有 PBPNBN (三角形两边之差小于第三边) BPPCABAC证明:(补短法) 延长AC至M,使AMAB,连接PM, 在ABP和AMP中 ABPAMP (SAS) PBPM (全等三角形对应边相等) 又在PCM中有:CMPMPC(三角形两边之差小于第三边) ABACPBPC。七、延长已知边构造三角形:例如:如图7-1:已知ACBD,ADAC于A ,BCBD于B, 求证:ADBC分析:欲证 ADBC,先证分别含有AD,BC的三角形全等,有几种方案:ADC与BCD,AOD与BOC,ABD与BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。证明:分别延长DA,CB,它们的延长交于E点, ADAC BCBD (已知) CAEDBE 90 (垂直的定义) 在DBE与CAE中 DBECAE (AAS) EDEC EBEA (全等三角形对应边相等) EDEAECEB 即:ADBC。(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。)八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。例如:如图8-1:ABCD,ADBC 求证:AB=CD。分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决。证明:连接AC(或BD) ABCD ADBC (已知) 12,34 (两直线平行,内错角相等)在ABC与CDA中 ABCCDA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 虚拟现实在航空培训中的交互设计-洞察分析
- 特种陶瓷行业监管机制完善-洞察分析
- 项目管理数字化转型策略-洞察分析
- 宇宙微波背景辐射的偏振结构-洞察分析
- 休闲产业市场结构剖析-洞察分析
- 《巨人的花园预习》课件
- 颜料在生物医学领域的探索-洞察分析
- 音乐创作辅助工具研究-洞察分析
- 退货管理信息化建设-洞察分析
- 隐私安全协议设计-洞察分析
- 《面点基本要求作业设计方案-中式面点技艺》
- 上海市杨浦区2023-2024学年九年级上学期期末质量调研英语试题
- 安全生产目标考核表
- (高清版)TDT 1042-2013 土地整治工程施工监理规范
- 工程训练(广东工业大学)智慧树知到期末考试答案2024年
- 2023-2024学年重庆市九龙坡区高二(上)期末物理试卷(含解析)
- 初中数学九年级下册《位似》(1)教案
- 天全县储备林建设项目施工组织设计样本
- 矿权收储方案
- 2022-2023学年重庆市渝北区人教PEP版五年级上册期末英语试卷
- 安徽省合肥市庐江县2022-2023学年八年级上学期期末物理试卷(含答案)
评论
0/150
提交评论